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This study addresses the effect of selecting an appropriate risk measure and the impact of this choice on the efficient frontier of the 

project portfolio of an organisation. The appropriate choice of a firm’s project portfolio has a great impact on the organisational 

success. Each portfolio manager selects the best projects with different criteria and consistent with firm’s strategic objectives. We 

used the Markowitz efficient frontier method to select the best projects of the organisation.  The choice of proper measures impacts 

on this decision and can change the organisation’s portfolio. The standard deviation was applied, and the relevant optimisation 

was made for this purpose. Then, the semi-standard deviation was used to differentiate between favourable and unfavourable 

opportunities. Afterwards, Value at Risk and Expected Shortfall were applied as appropriate risk measures to make a better 

estimate of the tail risks. All these risk measures were used to select the best possible projects. Managers should select the 

appropriate risk measures according to their objectives, estimation of their project distribution, and characteristics of the projects. 

This research studied the best measures consistent with construction projects and the effect of changes in these measures. 
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Introduction 
 

Portfolio optimisation is the selection of the best 

possible projects among a set of available candidates. The 

Markowitz mean–variance model uses the trade-off 

between risk and return to find the efficient frontier 

(Markowitz, 1952). The traditional portfolio theory uses 

unrealistic assumptions, which have become the object of 

some later studies. Chang et al. (2000) Liagkouras & 

Metaxiotis, (2014) and Saborido et al. (2016) considered the 

cardinality constraints for their optimisation. Sefair et al. 

(2016) optimised a portfolio of non-divisible projects with 

semi-variance as a risk measure. Portfolio managers must 

consider both maximising the expected return and 

minimising the risk (Woodside-Oriakhi et al., 2011). In the 

portfolio optimisation process, it is very important to use 

relevant measures, specifically in terms of risk, for selecting 

the best possible projects. Changes in risk measures can alter 

the selected projects and, therefore, the portfolio of projects. 

Measures are determined using different approaches. Risk 

can be defined as a threat. With this approach, the related 

measures are used to review the success criteria critical for 

the portfolio of projects. Reasons for unsuccessful attempts 

are considered as risks for that portfolio. Risk can be 

considered as the range of deviations from the expected 

outcomes of the project. These deviations in outcomes can 

be categorised as positive or negative, and various measures 

can be defined accordingly. The selected risk measure 

strongly depends on the definition and the approach used for 

the evaluation of project risks. The selection of the measures 

can also alter the optimal project portfolio and result in a 

completely different set of projects.  This paper aims to 

examine the impact made on the optimisation process by the 

selection of various risk measures. 

Risk Measurement 

Risk is defined as the probability of future loss, which 

exists due to the uncertainty of the occurrence of an event in 

the future. According to Gilb (2002), risk is any phenomenon 

that can alter the results expected by an investor. The 

concept of risk plays a key role in project management and 

is one of the primary concerns of project managers. 

Therefore, the sources of risks must be identified first to 

enable its measurement and efficient management. Risk 

management can be identified as a process of identification, 

analysis, evaluation, response and control of risks in 

projects (Guide, 2001; Rodriguez et al., 2017; Rose, 2013). 

Over the past years, a variety of standards and models was 

proposed for risk management in different industries. 

Rodriguez et al. (2017) developed a method for the selection 

of appropriate IT risk management, Zare Naghadehi et al. 

(2016) focused on an urban tunnelling project, Wu et al. 

(2015) specialised in offshore pipeline projects, and 

mailto:vr.yousefi@ut.ac.ir
mailto:yakhchali@ut.ac.ir
mailto:sarmadkiani@ut.ac.ir
mailto:jonas.saparauskas@vgtu.lt
http://dx.doi.org/10.5755/j01.ee.29.2.17405


Vahidreza Yousefi, Siamak, Haji Yakhchali, Jonas Saparauskas, Sarmad Kiani. The Impact Made on Project Portfolio…  

- 169 - 

Rodriguez et al. (2016) investigated IT projects. Becker & 

Smidt (2015) studied workforce-related project risks and 

9C. Wang et al. (2016) investigated the influence of risk 

propensity on the risk perception of construction project 

managers. The following stage is risk quantification. 

Yousefi et al. (2016) studied and quantified risks causing 

claims, and Pfeifer et al. (2015) investigated risks causing 

delays. Liu et al. (2017) proposed a risk assessment model 

and Cao & Song (2016), assessed the risks of co-creating 

value with customers under uncertainty. One common way 

for managers is evaluating the effect of uncertain factors on 

the Net Present Value (NPV) and Internal Rate of Return 

(IRR) (Hacura et al., 2001; Liu et al., 2017; Rezaie et al., 

2007; Suslick et al., 2009; 2000; Ye & Tiong, 2000). 

From the perspective of project managers, sometimes 

risk is merely presented as being qualitative. Having a view 

on risk is effective in its management, but numerous mental 

judgments and differences in opinions among the managers 

make it hardly helpful in optimisation. Therefore, after the 

identification of risks, it is appropriate to examine the risk 

measurement method. This quantitative approach can also 

be very helpful in examining the interdependencies and 

interrelation of risks. It should be noted that even with 

appropriate risk management systems, interdependencies 

and interrelation of risks can be ignored. Zhang (2016), 

investigated this risk dependence. Even with the intuition of 

the project risks, giving a quantitative estimate of the risks 

is quite difficult, unless a very specific application of the risk 

measure is clearly specified. Thus, to design and develop a 

proper risk measure, it is necessary to clarify its 

characteristics. Based on this concept, the theory of Coherent 

Risk Measures is presented by Artzner et al. (1999). In this 

study, the desired features of risk measures are defined as 

Monotonicity, Subadditivity, Positive Homogeneity, and 

Translational Invariance (Artzner et al., 1999; Jorion, 2010). 

 
Monte Carlo Simulation 
 

The Monte Carlo simulation method can be applicable 

for resolving problems with almost any degree of 

complexity. Also, such factors as path dependency, fat tails, 

non-linearity, multiple risk factors, interdependencies etc., 

which can cause problems with other approaches, can be 

examined easily. The Monte Carlo simulation can be used 

in dealing with dimensionality (Cong & Oosterlee, 2016). 

Simulation methods are suitable for solving multi-

dimensional problems. These problems include situations, 

in which the results are dependent upon more than one risk 

factor. The Monte Carlo simulation has been used in lots of 

portfolio management researches during the past decades. 

Cong & Oosterlee (2016) applied this method to a multi-

period mean–variance portfolio optimisation problem; 

Brandt et al. (2005) used it for a dynamic portfolio selection; 

Denault & Simonato (2017) and Cesari & Cremonini (2003) 

addressed different market situations and calculated the 

respective risk-adjusted performance. Denault & Simonato 

(2017) used the combination of least-squares regressions 

and Monte Carlo simulations for dynamic portfolio choices. 

Buchner (2015), applied the Monte Carlo approach for 

pricing of options, and Wang et al. (2016) used the Monte 

Carlo approach for finding the Value at Risk of a portfolio 

made of options and bonds. Pajares & Lopez-Paredes (2011) 

applied this method in finding the statistical distribution of 

a project (Acebes et al., 2015). Assuming the stochastic 

nature of projects returns, it is possible to use a statistical 

learning technique to refine the results (Acebes et al., 2015).  

This method can also be used with the estimation of 

confidence levels, as an index for the accuracy of results. In 

this study, NPV and IRR have been examined using the 

Monte Carlo simulation method at the 90 % confidence level. 

Furthermore, this method can be applicable to portfolios with 

heterogeneous or complex projects. Generally, the Monte 

Carlo simulation is used when either there are no analytical 

methods at hand, or they are so complicated that this method 

would find an answer in a much easier way. Overall, it can be 

stated that with an increase in the complexity, this approach 

will look more appealing. In the figures below illustrate the 

NPV and IRR calculated for one of the projects at the 90 % 

confidence level. 
 

 
 

Figure 1. Simulated Distribution of a Project’s IRR  

 

 
 

Figure 2. Simulated Distribution of a Project’s NPV  

 

Optimising the Project Portfolio of an Organisation 

 
At the first step of this study, different cost and return 

data of construction projects were grouped according to the 

types of projects. Then, the relevant distribution for each 

type of project was determined. Once the distribution of 

each project was established, the simulation was made of 

uncertain factors, such as returns and costs of the projects. 

For any of the organisation’s projects that may have needed 

a decision, the estimation of the return and cost data was 

assessed using the Monte Carlo simulation. Aiming to reach 

reliable and valid results, data were simulated 10000 times. 

The following figure illustrates the IRR distributions of 

possible projects.  
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Figure 3. IRR Distributions of Possible Projects  

 
Quantification of Risk 
 

Risks can be examined in two ways: 1 — Uncertainty, 

which shows the change in the factors leading to the 

occurrence of risk and the uncertainty of the occurring 

event; 2 — Exposure, which indicates the amount of 

exposure due to changes in risk factors. Conditional 

distribution of risk is estimated using these two components, 

and then, the characteristics of this distribution are used to 

determine the value of the risk measure. 

 
Standard Deviation 
 

One practical way of evaluating project risks is 

considering its impact on the expected return. Risks make 

the project outcomes and expected returns less predictable. 

As a result, the risk increases with the expected return 

volatility. Therefore, risk can be defined as the standard 

deviation of the project returns (Markowitz, 1952). Projects 

valuable to the organisation were examined based on their 

categorisation. The estimated return and corresponding 

risks were assessed using the Monte Carlo simulation. 

Relationships and project interdependencies were examined 

next. The estimation of these relations was fairly important 

in reaching a credible optimisation in the selection of the 

projects. 

Then, with the help of Markowitz mean-variance 

model, the amount of investment allocated to each project 

was determined. As it is evident from the figure, the output 

of this optimisation is to reach an efficient frontier. That is, 

only the projects and the investment weights relevant to this 

efficient frontier are optimal. This efficient frontier has 

higher return and/or lower risk, compared to any other 

possible choice.   

 
Figure 4. Portfolio Optimisation with Standard Deviation 

Downside Risk 
 

Another perspective allows for the right-side of the 

return distribution to be considered as project opportunities. 

This approach may look more accurate from the perspective 

of investors. Theoretically, it is much more realistic than the 

mean–variance approach, since the portfolio managers are 

in fact only concerned with the left-side of the return 

distribution. Paquin et al. (2016) investigated this downside 

risk, and its impact on the expected profitability of a firm, 

and Sefair et al. (2016) used semi-variance as a risk measure 

in their optimisation in the oil and gas industry. 

Risks that arise from uncertainty can be defined in terms 

of upside and downside volatilities. Obviously, the upside 

volatilities are suitable opportunities which, based on the 

situation, can improve the project return. In fact, the 

downside volatilities are the main concern of portfolio 

managers. Therefore, it is inappropriate to use risk measures 

that consider the same weights to positive and negative 

returns, such as standard deviation. Most portfolio managers 

and project managers act asymmetrically towards upside 

and downside volatilities (loss and gain) due to loss 

aversion. Therefore, optimising the portfolio with the mean–

variance method, which penalises both positive and 

negative volatilities, leads to a portfolio that minimises the 

total volatilities, which also include suitable opportunities. 

Therefore, using the mean–variance method, the output 

portfolio includes projects with the maximum return in any 

level of the total volatility the or minimum total volatility at 

any return level. To resolve this issue and to distinguish 

between the risks that lead to loss and project opportunities, 

the semi-standard deviation measure can be used as the risk 

measure. Next, this definition of risk was used in the 

optimisation of risk and return.  

 
Figure 5. Portfolio Optimisation with the Semi-Standard 

Deviation 

 
As it is evident from the figure, the efficient frontier 

derived from the semi-standard deviation method has 

different weightings. The interpretation of this efficient 

frontier in different risk and return levels is depicted in the 

first diagram with the exception that not all total volatilities 

are minimised. The selected projects on this efficient 

frontier may have higher total volatilities than the first 

model. Here, only the downside risks of the project were 

minimised.  
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Value at Risk 
 

Normality is one of the first assumptions which is 

generally considered for distributions. However, most risks 

contain skewness and leptokurtosis. Most risk measures, 

such as the standard deviation and semi-variance, perform 

based on the normal distribution assumption and, therefore, 

if there is any deviation from this assumption, their 

application cannot be justified. Thus, it is practical to use a 

measure that can still be applied even if the distribution is 

abnormal. VaR is the percentage of portfolio value that is 

exposed to the risk of loss.  

Value at Risk is more consistent with management 

comprehension of the risk management and the limitations 

it faces. At any time during the life of a project, a portfolio 

manager needs to have awareness about the chance of loss 

in the portfolio value to make proper decisions. Therefore, 

using Value at Risk as a measure of risk, which gives a clear 

interpretation of minimising the downside risks, is rather 

competent. This measure is commonly used in the finance 

literature. The VaR has been used and frequently 

investigated as a well-known risk measure (Allen, 2003; 

Chen et al., 2012; Dempster, 2002; Dowd, 1998; Duffie & 

Pan, 1997; Holton, 2003; Jorion, 2000).  Value at Risk is a 

common risk measure for various risk factors. Value at Risk 

can be used for any portfolio and enables the comparison of 

the risks of different portfolios. VaR is the most outstanding 

among the risk measures. For instance, VaR is used as a risk 

measure by regulators of some industries, such as banking 

(Scaillet, 2003; Wang & Zhao, 2016). This risk measure has 

been employed as a standard tool for risk management 

during the past decades (Spierdijk, 2016). Value at Risk 

helps with the aggregation of risks of portfolio components, 

and thus with the calculation of portfolio risk. For this 

purpose, interactions and correlations of different risk 

factors should be considered. Balbas et al. (2017) proposed 

an approximation for optimising VaR. 

One of the most important advantages of Value at Risk 

is that it provides quantitative benchmarks, which enables 

the estimation of interdependent fat tails and abnormal risks. 

Tsao (2010) incorporated VaR in mean-VaR efficient 

frontier and argued that this selection method was more 

accurate when distributions were abnormal. Basak & 

Shapiro (2001), Jang & Park (2016), Yiu (2004) and Zhao 

& Xiao (2016) considered VaR as a risk constraint, while 

Yiu (2004) found it would result in the reduction of risky 

asset investments (Zhu et al., 2016). Zhang & Gao (2017) 

applied dynamic value-at-risk constraints, and Zhu et al. 

(2016) used the maximum VaR solving the portfolio 

selection problem as a constraint. Lu et al. (2016) 

investigated the optimal reinsurance under the both VaR and 

Tail VaR risk measures. Value at Risk has a dynamic and 

futuristic approach which allows for a more accurate 

estimation of risk. Chan & Sit (2016) studied the random 

walk behaviour of VaR. He et al. (2016) proposed a Copula-

based Portfolio Value at Risk (PVaR) model. Another 

reason, which can encourage portfolio and project managers 

to use Value at Risk, is the increase in project uncertainties. 

In addition, the complexity of project portfolios and the 

emergence of various types of projects in terms of cost, 

time, strategic goals etc., have challenged the portfolio 

managers in the risk measurement. 

The following diagram uses the Markowitz model to 

optimise the risk and return. Here, the exception applies, 

namely, that the Value at Risk was put forward as the risk 

benchmark. As demonstrated, the efficient frontier has 

changed with the change in the risk measure. This model is 

more suitable for managers who seek for an estimate of 

possible losses of project portfolios.   
 

 
 

Figure 6. Portfolio Optimisation with Value at Risk 

 
Expected Shortfall 
 

Even though Value at Risk measure is practical, it 

should be noted that VaR does not provide any description 

of the left-hand tail of the distribution and only estimates the 

probability of occurrence of losses above a specific level. If 

the loss goes beyond VaR, the amount of this excess loss 

cannot be measured. A benchmark named Conditional VaR 

(CVaR) or Expected Shortfall (ES) is available to address 

the issue as it considers the loss that exceeds VaR. Also, 

since Value at Risk is measured together with some errors 

and using data with different time gaps or various statistical 

methods, it can lead to different results in the estimation of 

VaR (Jorion, 2010).   

Considering VaR weaknesses, Artzner et al. (1999) 

proposed the expected shortfall measure. Banulescu & 

Dumitrescu (2015) used the expected shortfall as a risk 

measure to decompose the risk. Chen & Yang (2016) used 

stochastic programming with the conditional VaR for multi-

period portfolios. Degiannakis & Potamia (2016) 

investigated the accuracy of predictions of Multiple-days-

ahead value-at-risk and the expected shortfall forecasting. 

Chen et al. (2012) forecasted Bayesian VaR and the 

expected shortfall for a heteroscedastic return series. Wang 

& Zhao (2016) studied the semi-parametric CVaR 

estimation. Mbairadjim Moussa et al. (2014) calculated the 

linear portfolio VaR and the expected shortfall for heavy-

tailed return distributions. Ortiz-Gracia & Oosterlee (2014) 

calculated the VaR and the expected shortfall for nonlinear 

portfolios with options. Kim & Lee (2016) considered 

nonlinear expectile regression models for estimation. Righi 

& Ceretta (2015) compared expected shortfall estimation 

models. Kellner & Rösch (2016) analysed the reaction of 

VaR and the expected shortfall in relation to sources of 

model risk. Brandtner & Kursten (2015) applied the 

expected shortfall to decision making. 

The expected shortfall is a proper candidate for risk 

measurement. This measure is the average of the worst 

losses. Generally, VaR is used as the determining border of 
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the worst loss. This measure has many applications. Of 

course, compared to VaR, ES is a more flawless measure of 

risk as it tells us what to expect in bad situations. In other 

words, it shows how bad the conditions can get, while VaR 

does not provide any information about the losses above a 

specified level.  
 

 
 

Figure 7. Portfolio optimisation with the expected shortfall 

 
This diagram uses the expected shortfall as the measure 

of risk and shows a change in the efficient frontier. This 

definition is more suitable for managers who are after the 

minimisation of tail losses. Generally, decision-making 

regarding the expected risk and return is much more credible 

using ES compared to VaR.  

 

Conclusion 
 

This study used the Markowitz efficient frontier method 

to select the best projects of an organisation. First, all 

projects were grouped according to their type and based on 

the point of view of experts. For each project type, based on 

historical data and information, the relevant distribution for 

project cost, return and time was established. Projects that 

could receive investments were categorised into one of the 

established groups based on project characteristics. Then, 

using the Monte Carlo simulation, uncertain factors, such as 

return and cost data of each project, were estimated 

according to their relevant distribution. Their relevant NPV 

and IRR were calculated as well.  

In the process of portfolio optimisation, it is very 

important to use relevant risk measures. The next step is to 

select the appropriate risk measure. First, based on the 

common definition, the standard deviation can be used, and 

the relevant optimisation should be made. Then, to discern 

good opportunities for investing in projects from possible 

losses, the semi-standard deviation can be applied. It should 

be noted that in both models, the assumption of a normal 

distribution is rather important and should the project returns 

be abnormal, the risk would be underestimated. Therefore, in 

the process of the research, VaR and the expected shortfall 

are applied as the appropriate risk measures to achieve a better 

estimate of tail risks. This research estimated different 

efficient frontiers according to chosen risk measures. It 

should be noted that project and portfolio managers should 

select the appropriate risk measure according to the estimates 

of their project’s distribution and based on the characteristic 

of each project. This choice impacts on the change of the 

estimated efficient frontier and, as a result, the selected 

project portfolios of the organisation. 
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