Fiscal Policy Interaction with Private Investment: the Case of the Baltic States

Lina Sineviciene, Asta Vasiliauskaite

Kaunas University of Technology
Laisves av. 55-408, LT-44309, Kaunas, Lithuania
e-mail: lina.sineviciene@ktu.lt, asta.vasiliauskaite@ktu.lt
crossref http://dx.doi.org/10.5755/j01.ee.23.3.1934

Government’s role in promoting the country’s economy remains a relevant issue both in academics and politicians debates. Not only for individual countries but also for the European Union as a whole the promotion of high value-added activities, in particular in lower development small open economies which hardly recover from external economic shocks and experience significant social problems due to high unemployment level remains a relevant issue. The country’s competitiveness and level of development, as well as the country’s economy growth, depend on high value-added investment growth, and both private and public investments play a significant role in economy of each country. Government’s role, in particular through the fiscal policy, in the promotion of these activities is crucial. The prevailing view in the scientific literature is that in developed countries public investment crowds out private investment, while in developing – crowds in, but it is not clear under what conditions these effects occur because the countries are very different. Also the effect of the taxes revenues and the government expenditure indicators on private investment is unclear because the effect of these variables on private investment has not been studied comprehensively. So the aim of the research is to evaluate the relationship between fiscal policy indicators, such as the government revenues from taxes and the government expenditure, and private investment comprehensively including indicators of macroeconomic environment in the Baltic States, by applying correlation and regression analysis.

The conducted research revealed the existence of strong direct relationship between the fiscal policy indicators and private investment in the Baltic States, showing the importance of fiscal policy to private investment. During the analysis of detailed tax and expenditure indicators it has been established that the strongest relationship exists between the current taxes on income, wealth, etc and public investment with private investment. The current taxes on income, wealth, etc indicator explains about 86 percent of the private investment fluctuations and the gross fixed capital formation by public sector indicator explains about 80 percent of the private investment fluctuations in the Baltic States, whereas the effect of these indicators on private investment is analyzed separately, while macroeconomic indicators of a country explain only about 8-13 percent of the private investment fluctuations.

Keywords: fiscal policy, private investment, government revenue, government expenditure, macroeconomic indicators, Baltic States.

Introduction

According to Hermes & Lensink (2001), the studies revealed that disproportionately big part of changes within the growth of national economies can be explained by changes within private investment, affected by changes in fiscal policy. This conclusion justifies the significance of fiscal policy effects on private investment volumes. However, the understanding of how private investment reacts to changes within fiscal policy is also important, as investment is really significant for economic growth of a country and perspectives of companies’ development and competitiveness (Jongwanich & Kohpaiboon, 2008; Macerinskiene & Sakhanova, 2011). In research literature it was agreed that the increase in private investment, while other factors being stable, has an undoubtedly positive effect on production volumes. But still relevant issues involve the following – which factors effect private investment, what is the interaction between fiscal policy indicators and private investment, what decisions should the government take for promoting private investment, thus aiming to increase the future economic growth. Also for fiscal policy makers the efficiency of fiscal policy measures in pursuit of the private investment growth is still relevant, especially in the post-crisis period, while in the crisis-affected countries they can hardly achieve their previous level.

Scientific problem of the article. The effect of fiscal policy on private investment has been an important issue in fiscal policy debates at the level of politicians and scientists for a long time. In empirical studies investment behavior is explored at both the aggregate level of the country (Luintel & Mavrotas, 2005; Ang, 2009; Hassan & Salim, 2011), and the company level (Almeida & Campello, 2007; Cava, 2005; Bokpin & Onumah, 2009; Chen, Da, & Larraín, 2011; Coulibaly & Millar, 2011; Norvaisiene, et al., 2008). Analysis of empirical studies related to interaction between fiscal policy and private investment revealed that in scientific researches much attention is attached to the link between the government investment and private investment, both in developed and developing countries. Scientific literature contains indications that the state investment can either crowd in (Asante, 2000; Hermes & Lensink, 2001; Jongwanich &
Kohpaiboon, 2008) or crowd out private investment (Hermes & Lensink, 2001; Badawi, 2003; Badawi, 2005). The prevailing view in the scientific literature is that in developed countries public investment crowds out private investment, while in developing – crowds in, but it is not clear under what conditions these effects occur because the classification of countries into developed and developing is very general, though the countries are very different. Also the effect of the collected taxes volumes and the government expenditure indicators on private investment is unclear because the effect of these variables on private investment has not been studied comprehensively. Also, Luintel & Mavrotas (2005) maintain that the key investment function parameters are heterogeneous and characteristic to particular country, as countries significantly vary by fundamental factors, affecting the behavior of private investment. According to Furceri & Sousa (2009), the effect of the state investment on private investment is essential and should be considered by geographic regions. Thus, the novelty of this study refers to analysis of interaction between fiscal policy indicators and private investment in the Baltic States, by employing detailed indicators on the government revenues from taxes and the government expenditure, also including macroeconomic environment indicators. This study is also significant because similar studies have not been performed in the Baltic States and because these countries have lower fiscal policy-making practice. The aim of the research is to evaluate the relationship between fiscal policy indicators, such as the government revenues from taxes and the government expenditure, and private investment in the Baltic States.

Research object: relationship between fiscal policy indicators and private investment.

Research methods: analysis and synthesis of scientific literature, logic analysis and synthesis, statistical methods: Pearson correlation analysis and multiple regression analysis.

Overview of scientific researches on interaction between fiscal policy and private investment

The government’s activities can directly and indirectly increase the total production volume through interaction with the private sector. The scientific literature maintains that changes within the state expenditure and taxes affect companies’ profit, consequently, private investment as well. Private investment is one of the factors, mostly contributing to economic growth, both in developed and developing countries. This is because employment possibilities are created through investment and new technologies, thus increasing the revenues, which, finally, determine economic growth (Balls, 2005).

Scientific literature maintains that changes within the government expenditure, rather than changes within taxes, have a major effect on private investment (Alesina et al., 2002; Arin, 2004; Balls, 2005).

In neoclassical economics theory, in comparison with other theories, major focus is attached to the focus substitution or supplement relationship between the government investment and private investment. The substitution hypothesis is based on the approach that the government’s bigger expenditure on capital products will raise the price of capital accumulation above the optimal level, and this will encourage the private sector representatives’ aspiration to reduce their investment, with the aim to restore the optimal rate of capital accumulation in economy. This means that the government’s bigger expenditure, increasing the demand of lending funds, will make pressure on the increase in the interest rate. So, first, fewer funds will be available for the private sector’s consumption and investment and, second, higher interest rates will suppress investment. In both cases, financing government expenditure by borrowing, the state budget deficit will increase, resulting in the government budget deficit negative impact on both the economic growth and private investment (Hermes & Lensink, 2001; Bahmani-Oskooee, & Economidou, 2006; Karazijiene, 2009; Mehmood & Sadiq, 2010; Sineviciene & Vasiliauskaite, 2011; Fatima, 2011). According to Saunoris & Payne (2010), more effective budget deficit reduction can be achieved through the reduction in expenditures rather than increases in revenue (Saunoris & Payne, 2010). Such an action by the government may lead to the lower interest rate spreads and increased private sector borrowing opportunities. However, if the private sector representatives do not fully consider the increase in the government expenditure, without realizing the future increase in taxes, in this case the additional state debt will be absorbed, excluding any additional negative impact on real economy. So in this case, the neutrality condition should be in force, which shows that the government’s deficit has a neutral impact on the investment costs and growth. However, if the government sector expenditure is a substitution of capital products, they will displace the private investment. On the contrary, the supplement hypothesis emphasizes that the governmental sector expenditure on infrastructure and human capital, is likely to increase marginal productivity of private capital, and thus will promote bigger private investment, i.e. this might determine the investment crowd in effect, although in both hypothesis the effect of different state expenditure categories on private investment will differ (Laopodis, 2001; Wang, 2005).

Kandil (2009) made important findings in the area of crowding in or crowding out private investment. The author argues that as many advanced countries employ the existing resources near full utilization, an increase (decrease) in government spending increases (relaxes) constraints on available financing, limiting (availing) resources to finance the private activity. Private investment decisions are mostly dependent on economic conditions in developing countries, and government spending provides the necessary stimulus to mobilize private resources (Kandil, 2009).

Alesina et al. maintains that in OECD countries changes in fiscal policy play an important role in the private business investment. Interestingly, major effects arise from changes in primary government spending, especially in the government wage bill (Alesina et al., 2002).
According to Soli, Harvey, & Hagan (2008) changes in the government capital expenditure does not immediately affect private investment, but rather has a significant positive effect only after three years with all such spending in periods before being insignificant. The government recurrent expenditure is negative and insignificant for private investment.

Marattin & Salotti (2010) conducted analysis on interaction between the state expenditure and private investment of 14 EU countries in the period of 1970-2006. The authors identified that the shock of the state expenditure has positive effect on private investment. The increase in the state expenditure by 1% generates the increase of 0.41 % in private investment.

When splitting the state expenditure into expenditure related and not related to remuneration, it was established that remuneration-related expenditure has a relatively higher stimulating effect, whereas the government investment has no stimulating effect on private investment (Marattin & Salotti, 2010).

Hunt (2012) concludes that the most efficient short-term relationship between the capital stocks involves public sector investment responding to the private sector investment activity. Rather than public investment exerting a universally crowding-out or crowding-in effect on private investment, the evidence presented in this article suggests that public investment is most likely to be enticed by activity in private investment (Hunt, 2012).

There are indications in scientific literature that the link exists between government tax revenues and private investment. So, tax revenues, as well as the government expenditure, also affect private investment. Soli, Harvey, & Hagan (2008) identified that taxes on international trade have negative impact on private investment, whereas taxes on internal products and services, as well as income and property taxes have positive effect on private investment.

Generalizing approaches on the effect of the government’s tax policy on private sector’s investment-related decisions, prevailing in research literature, it is possible to assume that majority of taxes have negative impact on private investment (Hermes & Lensink, 2001; Alesina et al., 2002; Vergara, 2010; Forni, Monteforte & Sessa, 2009; Djankov et al., 2010).

Beside the fiscal policy variables, private investment is significantly affected by fundamental factors. In many studies economic growth is considered as one of key determination factors of private investment. Conditions of the financial system and its potential to extend credit to the economic participants are one of the crucial factors for economy (Asante, 2000; Sinevičienė & Vasiliauskaitė, 2010; Lakstutiene, 2008; Lakstutiene, Krusinskas & Platenkoviene; Snieska & Venckuvieni, 2011) and also for private investment. Economies are still strongly dependent on the banking sector and the financial possibilities of diversification are still low. Economic uncertainty also is a crucial determinant for economic growth (Lakstutiene, Breiteryte & Rumsaite, 2009) and private investment. Asante (2000) found that macroeconomic instability, political instability has negative effect on private investment. Also important indicators are inflation and real exchange rate. According to neoclassical theory, the user cost of capital is one of major micro level determinant of private investment (Davis, 2010).

The analysis of the scientific literature suggests that private investment is influenced by both the fiscal policy indicators and macroeconomic indicators. So the impact of these two groups of indicators on private investment must be studied jointly.

Analysis on fiscal policy interaction with private investment in Estonia, Latvia and Lithuania: research methodology and empirical results

The aim of this section is to assess the influence of fiscal policy on the private investment at the empirical level by applying correlation and regression analyses.

Research methodology. Assessment of the interaction between fiscal policy and private investment involves the employment of Pearson correlation and multiple regression analyses. The investment model that is used to investigate the effects of various forms of the government spending and revenues and macroeconomic variables on private investment according the above theoretical considerations in the Baltic States is specified as:

\[
PI_{it} = \alpha_i + \sum_{n,t} \beta_i FP_{n,t} + \sum_{n,t} \delta_{n,t} MI_{n,t} + \epsilon_{it},
\]

(1)

here: \(PI_{it}\) – private investment (measured by gross fixed capital formation by private sector);

\(FP_{n,t}\) – vector of country’s fiscal policy indicators: \(\text{general government revenue from taxes: current taxes on income, wealth, etc (TAXI); taxes on production and imports (TAXPI); social contributions (TAXSC); total government revenue from taxes (TTAX)}\); \(\text{general government expenditure according ESS’95 classification: gross capital formation (GCF); gross fixed capital formation (investment) (GFCF); acquisitions less disposals of non-financial non-produced assets (ACAO); compensation of employees (CEMP); subsidies (SUBS); property income (PROPI); social benefits (SB); intermediate consumption + other taxes on production + current taxes on income, wealth, etc (ICONS); other current transfers (OCT); capital transfers (CT); total expenditure (TE); government debt as a percentage of GDP (GD); budget deficit/surplus/GDP (percentage) (BDS)}\).

In majority of studies, exploring investment behavior, private investment is described as gross fixed capital formation rate, measured as the percentage of GDP. In the authors’ opinion, this is a derived indicator, which, when applied for analyzing the effects of other indicators, also expressed as the percentage of GDP, can determine wrong results with regard to private investment. In this study private investment is described as gross fixed capital formation rate, million Euros. Due to the previously mentioned reason, indicators of different taxes and different government expenditure are also measured by million Euros, at current prices.

\(MI_{n,t}\) – vector of country’s macroeconomic indicators: \(\text{real gross domestic product growth (GDPGR); real interest rate (RIR); domestic credit to private sector (% of GDP) (CRED); lending interest rate (LIR); inflation (GD})\).
Lina Sineviciene, Asta Vasiliauskaite. Fiscal Policy Interaction with Private Investment: the Case of the Baltic States

deficit (INF); real effective exchange rate (REER); real user cost of capital (RUCT); output gap (OG); gross operating surplus (corporations) (GOS); macroeconomic uncertainty (MUNC), dummy variable (DV).

\[\alpha, \beta, \delta - \text{regression coefficients.} \]

\[\varepsilon - \text{standard error.} \]

Data. Empirical analysis focuses on the data for Estonia, Latvia and Lithuania. Various indicators are collected from Eurostat, World Bank Statistics and Annual Macroeconomic Database of the European Commission (AMECO) databases; description of all independent macroeconomic variables used in this research and detailed data sources are presented in Table 1. All fiscal policy variables are collected from Eurostat. The study covers the period from 1995 till 2010, using annual data.

Table 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Scientific background for indicators selection</th>
<th>Data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real gross domestic product (GDP) growth (annual growth in percentage)</td>
<td>Jongwanich & Kohpaiboon, 2008; Ang, 2009; Asante, 2000; Badawi, 2005; Ahmad & Quyyum, 2008; Misati & Nyamongo, 2011</td>
<td>Eurostat</td>
</tr>
<tr>
<td>Real interest rate (percentage)</td>
<td>Asante, 2000; Liintel & Mavrotas; 2005; Erden & Holcombe, 2005; Badawi, 2005; Michaelides et al., 2005; Atesoglu & Emerson, 2008; Ahmad & Quyyum, 2008; Misati & Nyamongo, 2011</td>
<td>The World Bank</td>
</tr>
<tr>
<td>Domestic credit to private sector/GDP (percentage)</td>
<td>Jongwanich & Kohpaiboon, 2008; Liintel & Mavrotas; 2005; Badawi, 2005; Misati & Nyamongo, 2011; Cavallio & Daude, 2011</td>
<td>The World Bank</td>
</tr>
<tr>
<td>Lending interest rate (percentage)</td>
<td>The variable is used as a prime indicator of borrowing costs by private sector</td>
<td>The World Bank</td>
</tr>
<tr>
<td>Inflation (GDP deflator) (annual growth in percentage)</td>
<td>Liintel & Mavrotas; 2005</td>
<td>The World Bank, Eurostat</td>
</tr>
<tr>
<td>Real effective exchange rate (deflator: consumer price indices - 27 trading partners)</td>
<td>Jongwanich & Kohpaiboon, 2008; Asante, 2000; Liintel & Mavrotas; 2005; Badawi, 2005;</td>
<td>Author calculations (data: Eurostat, the World Bank)</td>
</tr>
<tr>
<td>Real user cost of capital (percentage)</td>
<td>Ang, 2009; Davis, 2010, Cava, 2005</td>
<td></td>
</tr>
<tr>
<td>Output gap (is measured by the deviation of actual output from its estimated potential output) (percentage)</td>
<td>Jongwanich & Kohpaiboon, 2008</td>
<td>AMECO</td>
</tr>
<tr>
<td>Gross operating surplus (corporations), billion ECU/EUR. (Gross operating surplus means operating surplus without deducting consumption of fixed capital)</td>
<td>This variable is incorporated in the analysis for the first time. It’s used as a firm level indicator.</td>
<td>AMECO</td>
</tr>
<tr>
<td>Macroeconomic uncertainty (measured as three-year moving average standard deviation of change in real GDP growth)</td>
<td>Jongwanich & Kohpaiboon, 2008; Ang 2009</td>
<td>Author calculations</td>
</tr>
<tr>
<td>Dummy variable that takes the value of 0 before entering the European Union, and 1 after the country’s incorporation in the European Union (after 2004)</td>
<td>Michaelides et al., 2005</td>
<td>European Commission</td>
</tr>
</tbody>
</table>

In order to evaluate the capital investment cost of capital the indicator of neoclassical investment model - real user cost of capital - is used. Real user cost of capital (RUCT) is calculated as follows (Ang, 2010):

\[RUCT = P_t^K(i_t - \pi_t^e + \delta_t)/P_t, \quad (2) \]

here: \[P_t^K - \text{price of capital is measured by the gross fixed capital formation deflator;} \]

\[i_t - \text{the average commercial bank lending rates;} \]

\[\pi_t^e - \text{the expected rate of inflation is constructed from the GDP deflator;} \]

\[\delta_t - \text{the depreciation rate is assumed to be constant at 5%}; \]

\[P_t - \text{the GDP deflator.} \]

Empirical results. Correlation analysis results of fiscal policy and macroeconomic indicators relationship with private investment are presented in Table 2. There is a strong, statistically significant, direct correlation link between the total government revenue from taxes (TTAX) and total government expenditure (TE) and private investment. Whereas the government budget deficit and government debt, measured as the percentage of GDP, have a weak and statistically insignificant relationship with private investment. However the budget deficit has a reverse relationship. Consequently, it is possible to assume that the private sector does not consider indicators of the government budget deficit and debt, when making investment-related decisions.

Analysis on the effect of separate tax groups on private investment shows that the current taxes on income, wealth, etc (TAXI) have a very strong, direct relationship with private investment, while taxes on production and imports (TAXPI) and social contributions (TAXSC) have a strong direct relationship with private investment. The relationship between private investment and the amount of collected taxes allows making a conclusion that together with economic growth, at the same time increasing sales volumes and profits of companies as well as private persons’ income, more taxes are collected, and the prevailing optimistic expectation of economic growth increases private investment volumes.

Analysis on interaction between the government expenditure and private investment shows that the strong significant positive correlation exists between gross capital formation (GCF) expenditure and gross fixed capital formation by public sector expenditure (investment) and private investment. Results of this study support the hypothesis that public investment crowds in private investment and does not contravene the results obtained by other authors, that in developing countries the government investment crowds in private investment. Also a strong, statistically significant relationship is established between the intermediate consumption + other taxes on production.
The empirical results of fiscal policy and macroeconomic indicators relationship with private investment using Pearson correlation analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>INCONS</th>
<th>CEMP</th>
<th>SUBS</th>
<th>PROPI</th>
<th>OCT</th>
<th>SB</th>
<th>CT</th>
<th>GCF</th>
<th>ACQ</th>
<th>GFCF</th>
<th>TE</th>
<th>TAXPI</th>
<th>TAXI</th>
<th>TAXSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Coefficient</td>
<td>0.852**</td>
<td>0.825**</td>
<td>0.839**</td>
<td>0.389</td>
<td>0.708**</td>
<td>0.677</td>
<td>0.151</td>
<td>0.897**</td>
<td>-1.174</td>
<td>0.894</td>
<td>0.811**</td>
<td>0.882</td>
<td>0.927</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.006</td>
<td>0.000</td>
<td>0.000</td>
<td>0.306</td>
<td>0.000</td>
<td>0.252</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Correlation is significant at the 0.01 level (2-tailed).

Analysis on the relationship of macroeconomic indicators with private investment reveals that the strongest link is established between gross operating surplus of corporations and private investment. Joining the European Union also had positive effect on private investment. Output gap (OG), real effective exchange rate (REER) and domestic credit to private sector as percentage of GDP (CRED) have strong, direct and statistically significant relationship with private investment. Whereas the lending interest rate (LIR) has an intermediate, reverse and statistically significant relationship with private investment. However, when analyzing the relationship between the lending interest rate and budget deficit, a very weak, reverse and statistically insignificant link between these indicators is identified. Also the absence of link between the government debt and private investment was identified, and the obtained correlation coefficient is not statistically significant. Thus, it is possible to make a conclusion that results of this study did not verify the hypothesis that the public sector budget deficit and debt increase borrowing costs of the private sector. Real user cost of capital has a weak, reverse and statistically insignificant relationship with private investment. Real interest rate (RIR), macroeconomic uncertainty (MUNC) and inflation have reverse, weak and statistically insignificant relationship with private investment.

In order to specify the form of relationship between fiscal policy and macroeconomic environment variables the regression analysis is performed (see Table 3). First five regressions describe relationship between fiscal policy indicators and private investment from government revenue side and 6-10 regressions – from government expenditure side.

The empirical results of fiscal policy and macroeconomic indicators impact on private investment using multiple regression analysis

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Regression (1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current taxes on income, wealth, etc</td>
<td>2,309 (0,000)</td>
<td>1,905 (0,000)</td>
<td>1,705 (0,000)</td>
<td>1,702 (0,000)</td>
<td>1,728 (0,000)</td>
<td>3,545 (0,000)</td>
<td>2,870 (0,000)</td>
<td>1,780 (0,000)</td>
<td>2,830 (0,000)</td>
<td>2,868 (0,000)</td>
</tr>
<tr>
<td>Gross fixed capital formation</td>
<td>8,898 (0,000)</td>
<td>8,763 (0,000)</td>
<td>7,767 (0,000)</td>
<td>8,098 (0,000)</td>
<td>182,328 (0,004)</td>
<td>182,328 (0,004)</td>
<td>182,328 (0,004)</td>
<td>182,328 (0,004)</td>
<td>182,328 (0,004)</td>
<td>182,328 (0,004)</td>
</tr>
<tr>
<td>Output Gap</td>
<td>68,828 (0,000)</td>
<td>68,095 (0,000)</td>
<td>64,030 (0,000)</td>
<td>68,828 (0,000)</td>
<td>84,832 (0,000)</td>
<td>85,098 (0,000)</td>
<td>79,579 (0,000)</td>
<td>82,289 (0,000)</td>
<td>79,579 (0,000)</td>
<td>82,289 (0,000)</td>
</tr>
<tr>
<td>Gross operating surplus</td>
<td>8,098 (0,000)</td>
<td>8,763 (0,000)</td>
<td>7,767 (0,000)</td>
<td>8,098 (0,000)</td>
<td>182,328 (0,004)</td>
<td>182,328 (0,004)</td>
<td>182,328 (0,004)</td>
<td>182,328 (0,004)</td>
<td>182,328 (0,004)</td>
<td>182,328 (0,004)</td>
</tr>
<tr>
<td>Domestic credit to private sector</td>
<td>-2,485 (0,775)</td>
<td>-16,067 (0,226)</td>
<td>-16,067 (0,226)</td>
<td>-2,485 (0,775)</td>
<td>-16,067 (0,226)</td>
<td>-16,067 (0,226)</td>
<td>-16,067 (0,226)</td>
<td>-16,067 (0,226)</td>
<td>-16,067 (0,226)</td>
<td>-16,067 (0,226)</td>
</tr>
<tr>
<td>Lending interest rate</td>
<td>-2,485 (0,775)</td>
<td>-16,067 (0,226)</td>
<td>-16,067 (0,226)</td>
<td>-2,485 (0,775)</td>
<td>-16,067 (0,226)</td>
<td>-16,067 (0,226)</td>
<td>-16,067 (0,226)</td>
<td>-16,067 (0,226)</td>
<td>-16,067 (0,226)</td>
<td>-16,067 (0,226)</td>
</tr>
<tr>
<td>Real user cost of capital</td>
<td>-14,206 (0,091)</td>
<td>-7,863 (0,551)</td>
<td>-7,863 (0,551)</td>
<td>-14,206 (0,091)</td>
<td>-7,863 (0,551)</td>
<td>-7,863 (0,551)</td>
<td>-7,863 (0,551)</td>
<td>-7,863 (0,551)</td>
<td>-7,863 (0,551)</td>
<td>-7,863 (0,551)</td>
</tr>
<tr>
<td>Constant</td>
<td>194,872 (0,079)</td>
<td>747,78 (0,000)</td>
<td>541,635 (0,000)</td>
<td>578,14 (0,001)</td>
<td>697,276 (0,000)</td>
<td>922,699 (0,000)</td>
<td>1300,099 (0,000)</td>
<td>1118,663 (0,000)</td>
<td>222,125 (0,000)</td>
<td>1384,253 (0,000)</td>
</tr>
<tr>
<td>R Square</td>
<td>0.859</td>
<td>0.942</td>
<td>0.966</td>
<td>0.967</td>
<td>0.969</td>
<td>0.799</td>
<td>0.919</td>
<td>0.933</td>
<td>0.922</td>
<td>0.920</td>
</tr>
<tr>
<td>Adjusted R Square</td>
<td>0.856</td>
<td>0.939</td>
<td>0.964</td>
<td>0.963</td>
<td>0.963</td>
<td>0.795</td>
<td>0.915</td>
<td>0.928</td>
<td>0.915</td>
<td>0.912</td>
</tr>
<tr>
<td>Std Error of the Estimate</td>
<td>359,5420</td>
<td>384,0425</td>
<td>294,7816</td>
<td>297,9023</td>
<td>288,3464</td>
<td>705,0508</td>
<td>452,8691</td>
<td>416,6397</td>
<td>355,2652</td>
<td>461,2482</td>
</tr>
</tbody>
</table>

Note: Dependent variable: gross fixed capital formation by private sector.
Bold typeface for values indicates significant difference from zero at the 10 % level.
Stepwise method (criteria: Probability-of-F-to-enter <=0.050, Probability-of-F-to-remove >=0.100) was used in regression models 1, 2, 3, 6, 7, 8.
Enter method was used in regression models 4, 5, 9, 10.
Source: author’s calculation.
Since both the tax and the government's expenditure indicators are highly correlated, only indicators which had the strongest statistical relationship with private investment are included into regression analysis, i.e. current taxes on income, wealth, etc (TAXI) from revenue side and gross fixed capital formation expenditure (investment) by public sector. Macro-environmental variables that had weak relationship with private investment, and were statistically insignificant in correlation analysis are removed from further regression analysis.

The regression analysis on the impact of fiscal policy indicators on private investment shows that current taxes on income, wealth, etc indicator explains about 86 percent, while gross fixed capital formation by public sector indicator explains about 80 percent of private investment fluctuations. However, vector of country's macroeconomic indicators explains only 8-13 percent of the private investment fluctuations. The best explanations of private investment fluctuations are given by the regression analysis that incorporates macroeconomic and fiscal policy indicators.

The results of multiple regression analysis suggest that the majority of independent variables in the regression models are not statistically significant. Statistically significant is the output gap in all regressions (except 1 and 6 regression equations (see Table 3), when only the fiscal policy variables were included in the regression equations). Output gap indicator explains about 8-12 percent of private investment fluctuations. Gross operating surplus is also a statistically significant variable (Equation 8), but its effect on private investment is direct but very small. Domestic credit to private sector indicator has acquired different signs in the regression equations, but bearing in mind the correlation analysis results, it can be stated that the possibility to extend credit for the private sector positively influence private investments (3, 4, 5 regressions). Lending interest rate indicator negatively affects private investment, but the value obtained of this indicator is statistically insignificant. Real user cost of capital adversely affects private investment, but this variable is statistically significant only in regression 5. In summary of the results of the regression analysis it can be stated that investment behavior in the Baltic States is best explained by the following indicators of fiscal policy: current taxes on income, wealth, etc and gross fixed capital formation by public sector. Also the following macro-environmental indicators are important: output gap, domestic credit to private sector, gross operating surplus of corporations and real user cost of capital.

Conclusions

1. Conducted research revealed the existing significant direct relationship between the fiscal policy indicators and private investment. Total government revenue from taxes and total government expenditure indicators had strong, statistically significant direct correlation link with private investment. However, no statistically significant link between private investment and the government deficit (surplus) and debt ratios, as well as between the lending interest rate and the government deficit (surplus) and the debt ratios was identified. Consequently, the opinion, prevailing in research literature, that the government’s borrowing has negative impact on private investment, thus increasing the borrowing interest rate for the private sector was not verified.

2. Analysis of the fiscal policy indicators impact on private investment from the tax revenue side has revealed that the strongest relationship exists between the current taxes on income, wealth, etc and private investment. Analysis of fiscal policy indicators interaction with private investment from the government expenditure side has showed that the strongest relationship exists between public investment and private investment. The obtained results do not contravene the approach, prevailing in research literature that in developing countries public investment crowds in private investment.

3. Fiscal policy indicators explain the main part of private investment fluctuations, while country’s macroeconomic indicators impact on private investment is considerably less. The output gap indicator explains major part of the macroeconomic indicators effect on private investment. The obtained results verify the approach that the GDP indicator has direct relationship with private investment, and it is one of key indicators in the assessment of private investment behavior.

4. Generalizing results of the research, it is possible to maintain that in the Baltic States strong relationship exists between the fiscal policy variables and private investment. This can be explained by the fact that alongside with economic growth, more taxes are collected, however, at the same time the government expenditure, as well as private investment increase, and vice versa.

References

Lina Sinevičienė, Asta Vasiliauskaitė. Fiscal Policy Interaction with Private Investment: the Case of the Baltic States

Lina Sinevičienė, Asta Vasiliauskaitė

Fiskalinės politikos sąveika su privačiomis investicijomis: Baltijos šalių atvejis

Santrauka

Tiek privačios, tiek vienoji sektoriaus investicijos turi labai didelę reikšmę kiekvienos šalies ekonomikos plėtrai. Ne mažai svarbių jų reikšmė ir įsakymas. nors nemažai tyrimų, kuriuose analizuojama fiskalinės politikos sąveika su privačiomis investicijomis atskleidė vertingų rezultatų, tačiau jie yra gana prieštaringi. Investicijų elgsena empiriniuose tyrimuose analizuojama tiki, kad fiskalinė politika su privačias investicijas turi labai didelę reikšmę. Ne mažai svarbių jų reikšmė ir įsakymas. Tiek privačios, tiek vienoji sektoriaus investicijos turi labai didelę reikšmę kiekvienos šalies ekonomikos plėtrai. Ne mažai svarbių jų reikšmė ir įsakymas.

Tyrimo tikslas – išvertinti fiskalinės politikos ryšį su priimamų investicijomis Baltijos šalyse.

Tyrimo objektas: vyriausybės ir privačios investicijos.

Nors mokslinei literatūrai iki galo nesutarimai dėl fiskalinės politikos poveikio priimamų investicijoms išsivysčiusios ir besivistanciškos šalyse, tačiau yra išvystytas įvairiausias nuomones į priemamenų jo poveikį. Didžiausias įtaką gali tiesiogiai priimamų investicijų kintamumai, tačiau, kaip nurodo Furerco & Souss (2009), vyriausybės išlaidų didėjimas padidina privačių investicijų elgesį, tačiau taip ir priimamų investicijų kintamumai, tačiau, kaip nurodo Furerco & Souss (2009), vyriausybės išlaidų didėjimas padidina privatų investicijų elgesį, tačiau taip ir priimamų investicijų kintamumai, tačiau, kaip nurodo Furerco & Souss (2009), vyriausybės išlaidų didėjimas padidina privatų investicijų elgesį.