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Production and service processes always introduce discrepancies between real and expected parameters. Accurate 

modelling of uncertainties in manufacturing processes has great impact on logistics related factors. In this representation, 

instead of a deterministic analysis of manufacturing processes with uncertain quality of components, decision making is 

described with stochastic decision trees. The objective of this work is to show how to include the uncertain quality of 

components into the optimization of manufacturing processes. This paper proposes a new decision tree model with stochastic 

parameters that can determine the optimal operations depending on the quality of components to be assembled. After a 

careful literature review, this paper introduces a model to formulate the problem of decision making in manufacturing and 

assembly processes depending on the quality of produced batches of components. The model seeks the optimal pre-assembly 

operation, like testing or repairing while taking into account specific costs, prior and posterior probabilities and likelihoods. 

Next, we demonstrate an enhanced stochastic decision tree with cumulative hypergeometric probability distributions to find 

the minimum of expected cost based objective function. Numerical results demonstrate how the proposed model supports 

the decision making process and increase the efficiency, flexibility and reliability of the manufacturing process. 
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Introduction 

 

Decision-making of manufacturing processes becomes 

more and more complex, because of the globalization of 

economy and market demands. New opportunities, issues and 

concepts are introduced. The design and operation of 

manufacturing processes includes four functional levels, like 

purchasing, production, distribution and inverse processes. In 

today’s economy, the pressure is on to make the 

manufacturing processes more and more efficient from the 

point of view of all of these functional levels. The competition 

is characterized as competition for customers through the 

quality, price and availability of products. The quality and 

price of final products depend on the quality of components. 

The quality can be described as an uncertain parameter which 

influences the optimal manufacturing strategy. Quality can be 

controlled and tested. Within the frame of this research work 

a new approach is described to support the decision making 

in manufacturing processes to find the best 

sampling/reworking process of components with uncertain 

quality. This research work is based on the idea of Winston‘s 

decision tree model (Winston, 1994), which demonstrated the 

Bayes rule in decision making processes with simple 

probability values of sampling results. 

There are numerous articles related to determining the 

optimal decisions in manufacturing processes. To build a 

link between literatures and this research work, we are 

focusing on the previous research results to answer the 

following questions: Who is doing what? Who has done 

what? Who first did it or published it? What are research 

gaps? Our methodology of structured literature review 

includes four main steps (Lage & Filho, 2010): 

- search for articles in databases and other sources, like 

Scopus, Science Direct, Web of Science, 

- reduce the number of articles by reading the abstract 

and identify the main topic, 

- define a methodology to analyze the chosen articles, 

- describe the main scientific results and identify the 

scientific gaps and bottlenecks. 

Firstly, the relevant terms were defined. It is a crucial 

phase of the review because there are excellent review 

articles in the field of manufacturing optimization and we 

didn’t want to produce an almost similar review, but we 

applied the presented methodology (Banyai et al., 2018). 

We used the following keywords to search in the Scopus 

database: “uncertainties” AND “manufacturing” AND 

“quality” AND “decision tree”. Initially, 280 articles were 

identified. This list was reduced to 150 articles selecting 

journal articles only. Our search was conducted in 

September 2017; therefore, new articles may have been 

published since then. 

In the following step, the 150 articles were reduced after 

reading the abstracts. We excluded articles  that did not draw 

our interest and did not address the economic aspects of 

decision making in production processes with uncertain 

component quality. After this reduction, we got 49 articles. 

We added 4 other articles selected through separate search 

(Aghdaie et al., 2013; Korponai et al., 2017; Banyaine Toth 

et al., 2017; Drejeriene & Drejeris, 2017), so the final list 

for classification and evaluation from the point of view of 

scientific results includes 53 articles. 

The final list of articles can be classified depending on 

the subject area. Figure 1 demonstrates the classification of 

these 37 articles considering ten subject areas. This 
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classification shows that the majority of articles are in the 

fields of engineering, business and management, computer 

sciences and decision science. 
 

 
 

Figure 1. Classification of Articles Considering Subject Areas 

Based on the Search in Scopus Database 
 

As Figure 2 demonstrates, the support of decision 

making in manufacturing processes has been researched in 

the past years. The first article in this field was published in 

1995 in the field of operational management (Mehrez et al., 

1995) and it was focusing on Petri-net based modelling and 

support of decision making problems in the field of 

operational management. The number of published papers 

has increased in the last 10 years; it shows the importance 

of this research field. 
 

 
 

Figure 2. Classification of Articles by Year of Publication 
 

The distribution of the most frequently used keywords 

is depicted in Figure 3. As the keywords show, the support 

of decision processes in manufacturing is based on support 

systems and optimization methods to describe uncertainties 

and behavior. 
 

 
 

Figure 3. Classification of Articles Considering the Used 

Keywords 
 

We analyzed the articles from the point of view of 

scientific impact. The most usual form to evaluate articles 

from the point of view of scientific impact is the citation. 

Figure 4. shows the 10 most cited articles with their number 

of citations. 

Quality related decisions are represented in all fields of 

supply chain: purchasing and procurement (Jin et al., 2014; 

Tang & Hsu, 2015), manufacturing and assembly (Chang et 

al., 2008; Shukla et al., 2015), distribution (Zhang et al., 

2016) and inverse processes like reverse supply chain 

(Pochampally & Gupta, 2005), life cycle assessment and 

end-of-life analysis of used products (Yao et al., 2010; Deng 

et al., 2017) and product development (Summers & 

Scherpereel, 2008), recovery (Dehghanbaghi et al., 2016) 

and defect removal problems (Kucharska et al., 2017). 
 

 
 

Figure 4. The 10 Most Cited Articles Based on the Search in 

Scopus Database 
 

Global competition and increased product variety has 

collectively forced the manufacturing enterprises and their 

logistics providers to strength the cooperation and 

networking through hyperconnected global logistics system 

(Banyai et al., 2018). Manufacturing and logistics systems 

are hyperconnected, when their agents are connected on 

multiple layers. Cooperation and networking can be seen 

from a wide range of aspects, like multi-agent coordination 

in networked manufacturing processes (Chan et al., 2007), 

design and operation of manufacturing networks (Mourtzis 

et al., 2015), worldwide production network analysis (Kuhn, 

2006), strategies for sharing of manufacturing resources 

(Kondoh & Salmi, 2011). However, the networking 

approach can be described as an agile supply chain solution 

(Agarwal et al., 2006), and uncertainty makes the design of 

supply chain processes more and more complex (Cardona-

Valdes et al., 2011), but the integration of procurement, 

manufacturing, distributions and reverse processes is 

unavoidable (Xu et al., 2013). 

Decision making with uncertain quality is a living 

optimization problem both in the field of production like 

automotive industry (Ouisse & Cogan, 2010), food 

processing (Curt et al., 2007), petrochemical industry 

(Moradi-Aliabadi & Huang, 2016), TV panel manufacturing 

(Tang & Hsu, 2015) and creating of high-tech/high-value 

products (Batkovskiy et al., 2016) and services (Jiang & 

Seidmann, 2014; Drejeriene & Drejeris, 2017). The 

economics of decisions includes other special application 

fields, like evaluation of the factors determining risk of 

growing current account deficit (Garšviene & Cibulskiene, 

2017) or the modelling of financial market volatility (Chin 

et al., 2016). 

The measurement and evaluation of quality and quality 

influenced processes is an area of research which has seen 

remarkable growth over the last few years. Researchers 

investigated new evaluation and measurement methods and 

tools to identify the impact of quality on products, processes 

and costs (Loftus & Giudice, 2014). Reliability is also 

strongly influenced by quality (Amuthakkannan et al., 

2009) and inspection processes have a measurable impact 

on quality as well (Mohammadi et al., 2015). The evaluation 

is especially important in complex automatized production 

facilities like flexible manufacturing plants (Ervural et al., 

2016; Aghdaie et al., 2013). 

There are many reasons to outsource manufacturing and 

logistics operations, like lower operational and labor costs, 

freeing up internal resources or core competences for more 

value-added processes, delegate responsibilities and add 

manufacturing resources to increase the fulfilment rate of 
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orders (Banyai, 2017). Empirical analyses show the impact 

of outsourcing on cost and quality (Gray et al., 2009). In this 

context, the principles of business management underline 

the importance of determining beneficial outsourcing 

options at the strategic level and optimize the planning at the 

tactical level of manufacturing and logistics (Hahn et al., 

2016). Quality house model is constructed to describe the 

dependent and feedback relationships among the factors, 

such as customer’s demands, product quality, process 

quality, quality assurance issues (Kuntiyawichai & 

Limkatanyu, 2006) and economic aspects. In the case of 

stochastic quality performance, fuzzy data envelopment 

analysis can be used to describe uncertainties of the 

processes (Sarina et al., 2012). Quality chain design and 

control is generally based on multi-stage decision making 

(Zhao et al., 2005; Hejazi et al., 2017). Not only 

technological (Molnar, 2017; Kundrak et al., 2013) but also 

logistics related parameters can have a great impact on 

quality: the leaders' spiritual intelligence influences the 

service quality of organization research (Silingiene & 

Skeriene, 2016), and hidden costs have to be taken into 

consideration while evaluating quality failure costs (Snieska 

et al., 2013). 

It remains a key challenge for companies to make the 

best decisions related to uncertain quality required to fulfil 

economic and logistic requirements. In recent years there 

have been many studies solving decision making problems 

related to uncertain behaviors in manufacturing processes 

using analytical methods (Kaur et al., 2015; Wudhikarn et 

al., 2015), statistical techniques (Villeta et al., 2012), fuzzy 

approaches (Tseng & Lin, 2008; Noori et al., 2008; Cheng 

et al., 2007; Sayyadi Tooranloo & Ayatollah, 2016). 

Empirical evidence is also used in the  research (Su & 

Linderman, 2016), and neural network applications also 

show robust directions of stochastic quality based 

manufacturing problems (Feng et al., 2006). Single and 

multiobjective optimization algorithms are also used not 

only in the field of engineering problems (Jarmai, 2007), but 

also in the field of decision making. 

More than 50 % of the articles were published in the last 

5 years. This result indicates the scientific potential of this 

research field. The articles that addressed the optimization 

of in-plant decisions are focusing on economic lot sampling 

(Fernandez, 2017), analysis of group behavior in uncertain 

quality function deployment (Yan et al., 2014) and pricing 

(Yu & Ma, 2013), but none of the articles aimed to identify 

the optimization aspects of in-plant decisions depending on 

the quality of components. Therefore, impact of uncertain 

qualities on manufacturing operations and processes still 

needs more attention and research. 

It was found that decision making tools and models 

(Singh & Ahuja, 2012; Samantra et al., 2013; Orji & Wei, 

2014) are important for optimization of manufacturing 

processes since a wide range of quality related decisions 

determine a complex stochastic optimization problem. 

According to that, the main focus of this research is the 

modelling and analysis of economic aspects of decision 

making in production processes with uncertain component 

quality, also taking into account the multi-component 

decisions. 

 

The main contribution of this article to the literature 

includes: (1) the model framework of decisions in 

production processes with uncertain quality; (2) definition 

of a new enhanced decision tree model with stochastic 

parameters described by cumulative hypergeometric 

probability distributions that can determine the optimal 

operations depending on the quality of components to be 

assembled; (3) mathematical descriptions of decisions 

related to the optimal pre-assembly operation, like testing or 

repairing; (4) computational results of the described model 

with different datasets. 

 

Modelling of Decisions Caused by Uncertain 

Quality of Components 

 

Within the frame of this session the decision making 

model of a manufacturing process with uncertain 

component quality is described. The manufacturing plant 

produces printed circuit boards (PCBs) with wave soldering 

technology in a batch size of N, where circuit boards are 

passed over a pan of waving molten solder and the 

components become soldered to the board contacting with 

the waving solder. Wave soldering production lines can 

produce defecting PCBs with a high probability, because a 

wide range of problems can be occurred, like bridging, 

insufficient solder, non-wetting, blow and pin holes, solder 

skips, flags or lifted components. From experience, 𝑝𝑄1
 

percentage of all batches contains 𝑀𝑄1
 defective PCBs and is 

qualified as 1st class batch, while 𝑝𝑄2
 percentage of all batches 

contains 𝑀𝑄2
 defective PCBs and is qualified as 2nd class 

batches. PCBs are transported to an assembly plant, where 

automated test platforms are assembled. The assembly cost 

depends on the quality of PCBs, because assembled defective 

PCBs must be after post-assembly test of the automated test 

platform removed, tested and repaired manually. The 

assembly cost of 1st class quality batch PCBs is 𝑐𝑄1
𝐴  and the 

same cost of 2nd class quality PCBs is 𝑐𝑄2
𝐴 .  There is a 

possibility to test the quality of produced batches with a 

without replacement method, where the costs of testing is 𝑐𝑇 

for each item to determine the quality of the batch. It is 

possible to repair 2nd class quality batches for a costs of 𝑐𝑅. 

However binomial probability distribution is a good 

approximation of hypergeometric probability distribution as 

long as the size of the sample is less than about 10 % of the 

population, but because of the dynamical size of the sample 

we are using hypergeometric distribution (Figure 5). 
 

 
 

Figure 5. Binomial and Hypergeometric Probability Distribution 

of Identify k Defective Component from n tests 
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As Figure 6 shows, the difference between the two 

different distributions are increasing almost exponentially 

as the size of the sample is increasing. 

 
 

Figure 6. Differences between the Binomial and Hypergeometric 

Probability Distribution 
 

As Figure 7 demonstrates, the difference between the 

two different distributions depends on the proportion of 

defective components. If the proportion of defective 

components is lower, than the binomial probability 

distribution approximates the hypergeometric probability 

distribution in the case of bigger sample sizes better. 

Therefore, hypergeometric distribution function can be seen 

as a good distribution function to model the above described 

decision problem. 
 

 
 

Figure 7. Differences between the Binomial and Hypergeometric 

Probability Distribution Depending on the Number of Defected 

Components 
 

The probability, that an n-trial test process without 

replacement results k defective components from the 1st 

class quality batch, when the batch consist of N items, 𝑀𝐺 

of which are classified as defected components may be 

written as 

𝑝(𝑛𝐷 = 𝑘|𝑄1) =
(

𝑀𝑄1

𝑘
)(

𝑁−𝑀𝑄1

𝑛−𝑘
)

(
𝑁
𝑛

)
. (1) 

The probability, that an n-trial test process without 

replacement results k non-defective components from the 1st 

class quality batch, when the batch consist of N items, 𝑀𝑄1
 

of which are classified as defected components may be 

written as 

𝑝(𝑛𝑁𝐷 = 𝑘|𝑄1) =
(

𝑀𝑄1

𝑛−𝑘
)(

𝑁−𝑀𝑄1

𝑘
)

(
𝑁
𝑛

)
. (2) 

The probability, that an n-trial test process without 

replacement results k defective components from the 2nd 

class quality batch, when the batch consist of N items, 𝑀𝑄2
 

of which are classified as defected components may be 

written as 

𝑝(𝑛𝐷 = 𝑘|𝑄2) =
(

𝑀𝑄2

𝑘
)(

𝑁−𝑀𝑄2

𝑛−𝑘
)

(
𝑁
𝑛

)
. (3) 

The probability, that an n-trial test process without 

replacement results k non-defective components from the 

2nd class quality batch, when the batch consist of N items, 

𝑀𝑄2
 of which are classified as defected components may be 

written as 

𝑝(𝑛𝑁𝐷 = 𝑘|𝑄2) =
(

𝑀𝑄2

𝑛−𝑘
)(

𝑁−𝑀𝑄2

𝑘
)

(
𝑁
𝑛

)
. (4) 

The probability, that the k defective components are 

resulted from the 1st class quality batch may be written as 

𝑝(𝑛𝐷 = 𝑘 ∩ 𝑄1) = 𝑝(𝑄1)
(

𝑀𝑄1

𝑘
)(

𝑁−𝑀𝑄1

𝑛−𝑘
)

(
𝑁
𝑛

)
. (5) 

The probability, that the k defective components are 

resulted from the 2nd class quality batch may be written as 

𝑝(𝑛𝐷 = 𝑘 ∩ 𝑄2) = 𝑝(𝑄2)
(

𝑀𝑄2

𝑘
)(

𝑁−𝑀𝑄2

𝑛−𝑘
)

(
𝑁
𝑛

)
. (6) 

The probability, that the k non-defective components 

are resulted from the 1st class quality batch may be written 

as 

𝑝(𝑛𝑁𝐷 = 𝑘 ∩ 𝑄1) = 𝑝(𝑄1)
(

𝑀𝑄1

𝑛−𝑘
)(

𝑁−𝑀𝑄1

𝑘
)

(
𝑁
𝑛

)
. (7) 

The probability, that the k non-defective components 

are resulted from the 2nd class quality batch may be written 

as 

𝑝(𝑛𝑁𝐷 = 𝑘 ∩ 𝑄2) = 𝑝(𝑄2)
(

𝑀𝑄2

𝑛−𝑘
)(

𝑁−𝑀𝑄2

𝑘
)

(
𝑁
𝑛

)
. (8) 

The probability, that the k defective components are 

resulted from the n-trial test process without replacement 

may be written as 
𝑝(𝑛𝐷 = 𝑘) =  𝑝(𝑛𝐷 = 𝑘 ∩ 𝑄1) + 𝑝(𝑛𝐷 = 𝑘 ∩ 𝑄2) = 

𝑝(𝑄1)(
𝑀𝑄1

𝑘
)(

𝑁−𝑀𝑄1
𝑛−𝑘

)+𝑝(𝑄2)(
𝑀𝑄2

𝑘
)(

𝑁−𝑀𝑄2
𝑛−𝑘

)

(
𝑁
𝑛

)
 (9) 

The probability, that the k non-defective components 

are resulted from the n-trial test process without 

replacement may be written as 
𝑝(𝑛𝑁𝐷 = 𝑘) =  𝑝(𝑛𝑁𝐷 = 𝑘 ∩ 𝑄1) + 𝑝(𝑛𝑁𝐷 = 𝑘 ∩ 𝑄2) = 

𝑝
𝑝(𝑄1)(

𝑀𝑄1

𝑛−𝑘
)(

𝑁−𝑀𝑄1

𝑘
)+𝑝(𝑄2)(

𝑀𝑄2

𝑛−𝑘
)(

𝑁−𝑀𝑄2

𝑘
)

(
𝑁
𝑛

)
 (10) 

So long as k defective components are resulted from the 

n-trial test process, the posterior probability of testing a 2nd 

class quality batch may be written as 

𝑝(𝑄2|𝑛𝐷 = 𝑘) =
𝑝(𝑛𝐷 = 𝑘 ∩ 𝑄2)

𝑝(𝑛𝐷 = 𝑘)
= 

𝑝(𝑄2)(
𝑀𝑄2

𝑘
)(

𝑁−𝑀𝑄2

𝑛−𝑘
)

𝑝(𝑄1)(
𝑀𝑄1

𝑘
)(

𝑁−𝑀𝑄1

𝑛−𝑘
)+𝑝(𝑄2)(

𝑀𝑄2

𝑘
)(

𝑁−𝑀𝑄2

𝑛−𝑘
)
 (11) 

So long as k defective components are resulted from the 

n-trial test process, the posterior probability of testing a 1st 

class quality batch may be written as 

𝑝(𝑄1|𝑛𝐷 = 𝑘) =
𝑝(𝑛𝐷 = 𝑘 ∩ 𝑄1)

𝑝(𝑛𝐷 = 𝑘)
= 

𝑝(𝑄1)(
𝑀𝑄1

𝑘
)(

𝑁−𝑀𝑄1

𝑛−𝑘
)

𝑝(𝑄1)(
𝑀𝑄1

𝑘
)(

𝑁−𝑀𝑄1

𝑛−𝑘
)+𝑝(𝑄2)(

𝑀𝑄2

𝑘
)(

𝑁−𝑀𝑄2

𝑛−𝑘
)
 (12) 
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So long as k non-defective components are resulted 

from the n-trial test process, the posterior probability of 

testing a 2nd class quality batch may be written as 

𝑝(𝑄2|𝑛𝑁𝐷 = 𝑘) =
𝑝(𝑛𝑁𝐷 = 𝑘 ∩ 𝐵)

𝑝(𝑛𝑁𝐷 = 𝑘)
= 

𝑝(𝑄2)(
𝑀𝑄2

𝑛−𝑘
)(

𝑁−𝑀𝑄2

𝑘
)

𝑝(𝑄1)(
𝑀𝑄1

𝑛−𝑘
)(

𝑁−𝑀𝑄1

𝑘
)+𝑝(𝐵)(

𝑀𝑄2

𝑛−𝑘
)(

𝑁−𝑀𝑄2

𝑘
)
 (13) 

So long as k non-defective components are resulted 

from the n-trial test process, the posterior probability of 

testing a 1st class quality batch may be written as 

𝑝(𝑄1|𝑛𝑁𝐷 = 𝑘) =
𝑝(𝑛𝑁𝐷 = 𝑘 ∩ 𝑄1)

𝑝(𝑛𝑁𝐷 = 𝑘)
= 

𝑝(𝑄1)(
𝑀𝑄1

𝑛−𝑘
)(

𝑁−𝑀𝑄1

𝑘
)

𝑝(𝑄1)(
𝑀𝑄1

𝑛−𝑘
)(

𝑁−𝑀𝑄1

𝑘
)+𝑝(𝑄2)(

𝑀𝑄2

𝑛−𝑘
)(

𝑁−𝑀𝑄2

𝑘
)
 (14) 

The expected cost of assembling batches without testing 

or repairing (direct assembly) can be calculated as 

𝑐𝐷𝐴 = 𝑝𝑄1
𝑐𝑄1

𝐴 + 𝑝𝑄2
𝑐𝑄2

𝐴 . (15) 

The expected cost of assembling batches after repairing 

without test can be calculated as 

𝑐𝐼𝐷𝐴 = 𝑐𝑄1

𝐴 + 𝑐𝑅. (16) 

The expected cost of assembling batches after testing 

and repairing if necessary can be calculated as 

𝑐𝐴𝑇𝑅 = ∑ 𝑝(𝑛𝐷 = 𝑘) ∙
𝑛

𝑘=0
 

min (
𝑝(𝑄1|𝑛𝐷 = 𝑘)(𝑐𝑄1

𝐴 + 𝑛𝑐𝑇) +

𝑝(𝑄2|𝑛𝐷 = 𝑘)(𝑐𝑄2

𝐴 + 𝑛𝑐𝑇); 𝑐𝑄1

𝐴 + 𝑐𝑇 + 𝑐𝑅
) (17) 

We then compute the expected cost after the best 

decision as  

𝑐𝑜𝑝𝑡 = 𝑚𝑖𝑛(𝑐𝐷𝐴; 𝑐𝐼𝐷𝐴; 𝑐𝐴𝑇𝑅), (18) 

which can be written as 

𝑐𝑜𝑝𝑡 = 𝑚𝑖𝑛(𝑝𝑄1
𝑐𝑄1

𝐴 + 𝑝𝑄2
𝑐𝑄2

𝐴 ; 𝑐𝑄1

𝐴 + 𝑐𝑅; ∑ 𝑝(𝑛𝐷 =𝑛
𝑘=0

𝑘) ∙ min (
𝑝(𝑄1|𝑛𝐷 = 𝑘)(𝑐𝑄1

𝐴 + 𝑛𝑐𝑇) +

𝑝(𝑄2|𝑛𝐷 = 𝑘)(𝑐𝑄2

𝐴 + 𝑛𝑐𝑇); 𝑐𝑄1

𝐴 + 𝑐𝑇 + 𝑐𝑅
)). (19) 

Considering the above described mathematical model, 

the modified decision tree using hypergeometric 

distribution functions makes it possible to find the optimal 

processing varieties and testing/sampling strategy to 

optimize the total processing costs of components required 

for assembly. 

 

Numerical Analysis and Results 

 

The above described model makes it possible to make 

optimal decisions to minimize the cost of the assembly of 

the final products from components with uncertain quality. 

Within the frame of this section, two scenarios will be 

analyzed. Figure 8 demonstrates the general structure of the 

decision tree with hypergeometric distribution function of 

quality related parameters. 
 

 
 

Figure 8. Decision tree Including Posterior Probabilities 

 

The 1st scenario describes a general two components 

model with dataset described in Table 1. In the case of the 

1st scenario the manufacturer produces two different 

components and these two components will be assembled 

into a final product. In the case of the 1st component, 75 % 

of the batches contains 10 % defective components and are 

qualified as 1st class batch, while 25 % of the batches 

contains 50 % defective components with hypergeometric 

distribution and are qualified as 2nd class batches. 

Table 1 
 

Dataset of the 1st Scenario 
 

 𝐩𝑸𝟏
 𝐩𝑸𝟐

 𝐌𝑸𝟏
 𝐌𝑸𝟐

 𝐜𝑸𝟏

𝑨  𝐜𝑸𝟐

𝑨  𝒄𝑹 𝒄𝑻 

Component 1 0.75 0.25 0.10 0.50 100 800 200 20 

Component 2 0.20 0.80 0.25 0.60 80 250 80 40 
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The assembly cost of 1st class quality batch PCBs is 100 

$ and the same cost of 2nd class quality components is 800 

$.  The costs of testing is 20 $ for each item to determine the 

quality of the batch and the repairing cost is 200 $ for 2nd 

class quality batches. In the case of the 2nd component, 20 

% of the batches contains 10 % defective components and 

are qualified as 1st class batch, while 25 % of the batches 

contains 50 % defective components with hypergeometric 

distribution and are qualified as 2nd class batches. The 

assembly cost of 1st class quality batch PCBs is 100$ and 

the same cost of 2nd class quality components is 800 $.  The 

costs of testing is 20$ for each item to determine the quality 

of the batch and the repairing cost is 200 $ for 2nd class 

quality batches. 

As Figure 9 shows, the best decision in this scenario is 

the testing of all batches with a cost of 247,5 $, while the 

cost of assembling without test and reworking is 275 $ and 

the cost of reworking without test is 275 $.

 

 
 

Figure 9. Differences between the Binomial and Hypergeometric Probability Distribution Depending on the Number                              

of Defected Components 

 

The decision making process can be evaluated from the 

point of view of value of information (Winston, 1994). The 

expected value with sample information (EVWSI) describes 

the final asset position. EVWSI are defined as: 

𝐸𝑉𝑊𝑆𝐼 = 𝑐𝐴𝑇𝑅 − c𝑇. (20) 

If the test market study is not available, we can calculate 

the expected value with original information (EVWOI) as 

defined: 

EVWOI = 𝑐𝐷𝐴 = 𝑝𝑄1
𝑐𝑄1

𝐴 + 𝑝𝑄2
𝑐𝑄2

𝐴 . (21) 

The expected value of the sample information is the 

difference of the expected value with sample information 

and original information: 

EVSI=𝐸𝑉𝑊𝑆𝐼 = 𝑐𝐴𝑇𝑅 − c𝑇 − 𝑝𝑄1
𝑐𝑄1

𝐴 − 𝑝𝑄2
𝑐𝑄2

𝐴 . (22) 

The expected value of perfect information can be 

calculated as follows: 

𝐸𝑉𝑃𝐼 = p𝑄1
𝑚𝑖𝑛(c𝑄1

𝐴 , c𝑄1

𝐴 + 𝑐𝑅) + 

p𝑄2
𝑚𝑖𝑛(c𝑄2

𝐴 , c𝑄1

𝐴 + 𝑐𝑅) = 

p𝑄1
(𝑚𝑖𝑛(c𝑄1

𝐴 , c𝑄1

𝐴 + 𝑐𝑅) − c𝑄1

𝐴 ) + (23) 

p𝑄2
(𝑚𝑖𝑛(c𝑄2

𝐴 , c𝑄1

𝐴 + 𝑐𝑅) − c𝑄2

𝐴 ) (22) 

where p𝑄1
 and p𝑄2

 are hypergeometric distribution 

functions. 

In this 1st scenario EVWSI=227.5 $, EVWOI=275 $, 

EVSI=47.5 $, EVWPI=150 $ and EVPI=125 $ for the 1st 

component and EVWSI=160 $, EVWOI=216 $, EVSI=56 

$, EVWPI=144 $ and EVPI=72 $ for the 2nd component. 

In the 2nd scenario we are analyzing the impact of 

parameters, especially the prior probability of 1st class and 

2nd class batches. As Figure 10 demonstrates, the function 

of quality of components to assembled to final products and 

posterior probabilities used in the decision tree based on 

hypergeometric distribution functions are no longer linear. 

As Figure 11 shows, the processing cost depends on the 

prior probabilities of the 1st class batches and there are two 

significant values of them, where the optimal processing 

strategy is changed. 

 
 

Figure 10. Impact of Prior Probability of 1st Quality Batches on 

the Posterior Probabilities 

Component 1 Component 2

1st class 1st class

0,750 0,200

300 300

100 80

247,5 275 160 275

800 250

1st class 1st class

0,250 0,375 0,800 0,094

1st class 2nd class 1st class 2nd class

0,200 0,530

120 120

320,00 557,50 200,00 273,96

820 290

320 0,625 200 0,906

2nd class 2nd class

247,5 200

1st class 1st class

0,844 0,319

120 120

229,38 229,38 200,00 235,74

820 290

0,800 0,470

2nd class 2nd class

320 0,156 200 0,681

2100 2nd class 2nd class

reworking

te
st
in
g/
sa
m
pl
in
g

reworking

reworking

reworking

te
st
in
g/
sa
m
pl
in
g

reworking

reworking
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Figure 11. Processing cost Depending on the Prior Probability    

of 1st Quality Batches 
 

In this scenario the first point, where processing 

strategy is changed is the p𝑄1
= 0.62. Under this value the 

optimal strategy is the reworking of all components. The 

second value is p𝑄1
= 0.82, above this value no rework is 

necessary, because of the high ratio of 1st class batches. 

Between these two values sampling is necessary to make the 

optimal decision. 

As Figure 12 shows, the value of information is 

increasing depending on the prior probability of 1st class 

quality batches. The ranking order of the values of 

information at the value of p𝑄1
= 0.50 are 𝐸𝑉𝑆𝐼 <

𝐸𝑉𝑊𝑃𝐼 < 𝐸𝑉𝑃𝐼 < 𝐸𝑉𝑊𝑆𝐼 < 𝐸𝑉𝑊𝑂𝐼. This ranking order 

is changed at a specific point of the prior probability p𝑄1
=

0.67 and the new ranking order of values of information are 

𝐸𝑉𝑆𝐼 < 𝐸𝑉𝑃𝐼 < 𝐸𝑉𝑊𝑃𝐼 < 𝐸𝑉𝑊𝑆𝐼 < 𝐸𝑉𝑊𝑂𝐼. 
 

 
 

Figure 12. Value of Information from Different Aspects 

Depending on the Prior Probability of 1st Quality Batches 

 

Conclusions 

 

This study developed a methodological approach for 

optimization of processing strategies in manufacturing 

systems with uncertain component quality. In this paper, 

firstly we review and systematically categorized the recent 

works presented for processing components with uncertain 

quality. Then, motivated from the gaps in the literature, a 

model to support decision making is developed. The model 

describes a new approach using hypergeometric distribution 

functions instead of normal or binomial distributions to 

describe the uncertainties of quality. The developed 

decision tree can be multiplied and used for the optimization 

and evaluation of quality related manufacturing processes 

for assembly. The scenario analysis showed the efficiency 

of the described model and algorithm. The scientific 

contributions of this paper are the followings: integrated 

model for decision making in manufacturing processes to 

find the optimal processing for components with uncertain 

qualities; description of the impact of quality on the value 

of information caused by sampling/testing; description of 

the uncertain quality with hypergeometric distribution 

function. Hypergeometric distribution function makes it 

possible to vary the parameters of sampling and the required 

lots of sampling can be also optimized from the point of 

view quality control costs. The results can be generalized, 

because the model can be applied for a wide range of 

manufacturing technologies. The described methods make 

it possible to support managerial decisions; the operation 

strategy of the manufacturing can be influenced by the 

results of the above described contribution. However, there 

are also directions for further research. First, although the 

assembly of components is considered in this paper, the 

capacities of assembling and sampling are not taken into 

consideration. In further studies, the model can be extended 

to a more complex model including capacities and time 

windows (Banyai et al., 2018). Enterprise resource planning 

(ERP) systems are developed to manage and integrate 

business processes across organizational functions and 

locations. Finally this approach might be useful for further 

studies aiming the deeper integration of quality into ERP 

systems, where the growing importance of ERP integration 

is essential for increased efficiency and availability of 

manufacturing systems. 
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