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As a rule, under naturally operating conditions, es-
pecially in a closed environment, the product (under-
stood in a general sense) cannot grow at equal rate. It
is particularly obvious in a closed system maintaining
limited resources necessary for the support of the con-
crete product’s growth. In such a system, an initial rate
of the product’s increase gradually diminishes until its
considerable decline and total cessation. Therefore, to
model such a system, the differential equation of the
growth of the population should be supplied with the
factor expressing a straightly decreasing function.
Hence the logistic model of accumulation is achieved.
Meanwhile, the exponential function remains a special
case in the model.

Sometimes it is reasonable to equate both the logis-
tic and exponential functions. Then the coefficients of
equivalence between the logistic and the exponential
growth should be worked out.

The article presents a simplified way of the calcula-
tion of the regression coefficients of logistic equation
with the use of the lowest square method. The paper
offers the logistic regression equation of the gross do-
mestic product of the Republic of Lithuania, which is
equated with an analogical exponential equation.
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lation; exhaustible resources;, compound inte-
rest; future value; lowest square method; re-
gression equation; gross domestic product

(GDP).

Introduction

The model is understood as a reality representation
reduced to essentials. Models are often employed for the
investigation of the phenomena that occur around us: in
nature, professional activity, or in the sphere of social
relations. The mathematical or determined models are
regarded as the most widespread ones (Msrimkuc, 2004).

Quantitative calculations of the growth of produc-
tion, investment control, or money currents are usually
based on the exponential models. However, by their
nature, they cannot be accurate, especially, when fore-
casts must be extended into distant future. Basically, the
law of decreasing limit resultativity operating in eco-
nomic structures confirms this assumption (Bodie, Mer-
ton, 2000). Thus, the solution of such tasks requires
though more complex yet more accurate logistic models.

In fact, the problem of the practical application of the
logistic models has been scantily investigated.

The aim of research is to investigate the models of
accumulation by focusing on the specificity of the logis-
tic models as well as to ascertain their merits and dem-
onstrate their practical applicability by working out the
logistic regression equation of a particular object.

Generalized determined models of the population
product or, in certain cases of the capital accumulation
serve as the object of research.

The analytical method of investigation has been
employed which embraces the calculations of mathe-
matical analysis and econometrics based on the possi-
bilities offered by information technologies.

Natural exponential alteration: compound
percentage

One of the kernel assumptions in the exploration of
the product’s exponential growth is the proportionality
of the growth’s rate to its quantity at each moment of
time (Edwards, Penney, 1985). It will always remain so
when a new product is involved into further reproduc-
tion, i.e. when it starts providing a new product on its
own. In such a case, the product is said to increase natu-
rally since by growing it offers an increasing increment
on the basis of the same principle. Such an assumption
is not difficult to understand when viewed in connection
with the growth of the biological systems: the larger the
developing system, the bigger its increment:
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Figure 1. The structural scheme of the model of accumulation

Another example concerns capital: under certain
conditions, capital gives interests that, in their turn,
together with the old capital provide new interests, etc.
(Obi, 1998; Valakevicius, 2001).

The determined models of accumulation that dem-
onstrate a non-linear function of accumulation will be
further analysed in the paper. Fig.1 offers the structural
scheme of the model of population accumulation that is
constructed on the basis of the following equa-

tion: K = K, f(t) .



Let’s presume that K is the quantity of a certain
product at the time moment ¢, and the rate of the prod-
uct’s growth is the rate of the alteration of the function
that relates the altering ¢ and K. In other words, the rate
of the product’s growth at every time moment is in pro-
portion to its quantity. Let’s also consider that the pro-
portionality coefficient is constant and let’s mark it by
the letter i. Then

aK =i-K. D
dt

The result is an elementary differential equation

with the differentiated variable quantities. The equation

solved and the initial conditions estimated, i.e. when ¢ =

1, the quantity of the product K is equal to its initial K,

and when K|r:0 =K, ., the expression of the quantity of

the product K is:
K=K, e". 2

If i is taken as the rate of interest and ¢ is measured
by the same time units as the time estimated in the in-
terest rate, the equation (1) will show the natural expo-
nential growth of the capital. To say more, this law is
universal and may be applied for the modelling of other
populations in order to both estimate their growth and
vanishing (Rutkauskas, 2000).

Analogically, in the initial differential equation,
let’s take the proportionality coefficient equal to the
natural logarithm of any number r (r >0,r# 1). Then,

with r =141, the formula of compound percentage (i.e.
of compound interest) is worked out:
K=K,-(1+i) 3)
It is an exponential function. It should be also noted
that, when ¢ is a natural number, the equation (3) serves
as a formula to calculate a certain member of the geo-
metrical progression. During the modelling of the prod-
uct’s growth by the given formula, it comes out that the
product’s growth is infinite. In reality, the forecasting of
the product’s increase in the distant future on the basis
of this equation is inaccurate. At best, it may be used
only in exceptional cases when the coefficient in the
formula has been additionally corrected. No doubt, in-
accurate financial forecasts may be explained by the
imperfection of the formula (Misitinas, 1997).

Logistic (i.e. limit) growth of the product

In the given case, the international term logistics is
associated with the provision, i.e. with the possibility of
the utilization of certain resources. As a rule, under
naturally operating conditions, especially in a closed
environment, the product cannot grow at equal rate. As
has been mentioned it is particularly obvious in a closed
system that possesses the necessary limited resources to
maintain the growth of a particular product. As the ini-
tial rate of the product’s increase gradually diminishes
until considerable decline and total cessation, some-
times such a system is said to be the system of the lim-

ited growth.

The phenomenon of the limited growth is frequently
observed in nature. It is especially distinct in the animal
populations expanded in a closed territory. As long as
the population is relatively small and possesses substan-
tial food resources and large space, the rate of its in-
crease is great.

Contrariwise, when the population increases, it pos-
sesses less and less space and food resources. Then the
rate of its growth considerably diminishes (Tan-
nenbaum, Arnold, 1995). A similar law of the so-called
decreasing limit resultativity operating in the economic
structures demonstrates that, in certain conditions, when
the gross expenditure increases, the limit product (i.e.
the rate of the product’s growth) decreases. In economic
terminology, such peculiarity is called the limit capital
efficiency. Here the limit efficiency is the rate of return,
which is expected from additional investments. With the
increase of the investment amount, the limit investment
efficiency decreases. It is so because the initial invest-
ments have been realized at the most favourable condi-
tions, which caused large rates of income. Meanwhile,
later investments are not so much effective and offer
evenly smaller income (Pass, 1997, and others).

The operation of the mentioned law is especially
obvious in agriculture. If initially, for the cultivation of
the plot of constant size (for instance, one thousand
hectares) only several workers are employed, and later
their number considerably increases, after some time the
limit work product (i.e. the rate of the work product’s
growth) will start decreasing. Economic literature main-
tains that the situation to be otherwise, the entire world
might be nourished from the mentioned single plot
(Wonnacott P., Wonnacott R., 1998). Undoubtedly, if
the exponential law of growth operated all the time, the
product’s growth were unlimited and, during a long
period, its manufacturing would grow to a desirable
extent of amount.

Nevertheless it should be noted that, in most cases, the
term limit employed in the theory of economics possesses
another value, that is the value of rate, since it is associated
with the mathematical derivative of the function estimating
a certain phenomenon. The derivative is found out by the
calculation of the limit (Van Horne, 1995).

Logistic (i.e. limit) future value of the product

As far ago as the 19" century, when investigating
the alteration of the biological systems, P.F. Verhiilst
suggested to supplement the differential equation of the
growth of population with the multiplier possessing the
shape of a linear decreasing function:

- K. @)
K

m

where K, is the maximum (limit) value of the bio-
logical population or of any other product expressed by
the units estimating its amount.

Let’s apply the growth limiting multiplier (4) to the
differential equation of the product’s alteration (1). As
before, let’s take the proportionality coefficient equal to



the natural logarithm of any number r(r >0,r# 1). The
estimation of the initial conditions and the solution of

the differential equation with respect to the product K
results in the logistic (limit) future value of the product:

K — Km * KO * rt )

K, +K, (r-1)

Here, presuming that r =1+, the following for-

mula is obtained:
K, Ky-(1+i)
K, +Kol1+i) —1)

(%)

It is the logistic (limit) future value of the product
expressed by the rate of the growth percentage (Girdzi-
jauskas, 2002).

Having divided both the nominator and the denomi-
nator of the equation’s (9) right part by K, and marked

the ratio ﬁ by the letter S (KO =Sy 0<8, < 1], let’s
K

m m

consider this ratio the coefficient of the initial conges-
tion. In order to ascertain that time will be measured by
the same units as the time estimated in the rate of the
growth percentage, let’s mark it by the letter n that,
most frequently, expresses the entire periods of the per-
centage rate re-calculation. Thus re-worked, the future
value of the limit alteration is:

Ky-(1+6)
= : . (6)
1+ 8, -\(1+i) —1

The function of the product’s logistic accumulation
has been obtained, which demonstrates the relative ex-
pression, in other words, the coefficient of initial con-
gestion.

It is important to maintain that, in case the product’s
maximum value K, increases and approaches infin-
ity (Km —>oo), the coefficient of the initial congestion
declines and its value approaches zero (S, — 0). Then,
as one could expect, the formula (6) is no more than a
conventional formula of compound percentage (3). The
same will be obtained by having calculated the limit for
the equation (5) when K,, — o . On the other hand, if in
the equation (6) K, =K
equal to its maximum value, then the coefficient of the
initial congestion S, will be equal to /. When in the
equation (6) Sy = 1, the result is the conclusion confirm-
ing the initial condition: K, = K, .

i.e. the initial product is

m>°

Thus, the formula of compound percentage makes a
separate case of the logistic function of accumulation
when the maximum value of the product K, is im-
mensely large.

It should be also stressed that the obtained logistic
function differs from the classical one whose expression
is as follows:

X A-x K
K(x)zli—e or K(X)=———— . (7)
e +1

l+e**

The latter function is defined in the entire set of real
numbers and undergoes alteration within the interval (0;
K). In other words, all the values of the function have
been distributed between two horizontal lines K(x) = 0
and K(x) = K. Externally, the central part of the graph of
the logistic function resembles a deformed Latin ,,5%
The authors claim that, with the increase of the argu-
ment (i.e. time), the function (i.e. product) approaches
the constant value equal to the quantity of the coeffi-
cient K. This peculiarity is the most essential for further
generalizations. Fig.2 presents the graphs of this func-
tion when the coefficient K is constant and the values 4
are different. With the increase of the coefficient A when
the argument is in the environment of zero, the rate of
the function’s growth further enlarges:
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Figure 2. The graph of the logistic function

The alteration of the logistic function when the ar-
gument x is close to zero resembles the diagram of the
exponential function (2). The authors maintain that, in
this case, there is no direct relation between the expo-
nential and logistic functions since there is no direct
passage from one type of dependency to another.

Moreover, all the functions of the limited growth
whose character of alteration is similar to the alteration
of the logistic function (7) are also called logistic. The
logistic functions of the type of the formula (6) that are
more fit for the modelling of the financial phenomena
will be discussed further as well as the possibilities of
the exponential and logistic function application.

Let’s compare the diagrams of the exponential (7)
and logistic (6) accumulation (i.e. the graphs of the fu-
ture values). Fig. 3 presents the diagrams that illustrate
the dependency of the product‘s future value on time.
Here the interest rate of the graphically illustrated func-
tions makes 20% and the initial congestion S, alters
from O to 20% (i.e. the exponential variant shows the
absence of congestion). At the initial moment, the prod-
uct’s value is equal to one (K, = 7). It means that the
initial product is equal to one and that other values are
expressed by the initial product.

No doubt, the coefficient of the initial congestion S,
significantly affects the alteration of the limit function.
With the decrease of the initial congestion coefficient,
when the initial K, product is constant, the limit of this
function increases. If the coefficient S, gradually de-
clines (i.e.corresponding the curve in the graph when S,
= 0), the limit becomes infinite and the limit function, in
its turn, grows into the formula of compound percent-
age. Obviously, with the increase of the initial conges-



tion coefficient, the product’s future value decreases
despite other parameters of the logistic function remain-
ing unchanged.
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Figure 3. The product's dependency on time when
the values of the initial congestion are various
and when i=0,2, Ko=1

The diagram shows that, at the beginning (when n
values are low), all the functions (logistic and conven-
tional) do sufficiently overlap. To say more, a rather
inconsiderable value difference (e.g. about 5%) remains
for a longer period in case the percentage rate is smaller.
Later on the rise of the limit function graphs slackens
until its complete cessation.

The mentioned peculiarity of the diagram can be
easily observed in the analytical investigation of the
logistic function. The search for 1lim K leads to the

finding the indeterminacy oo/ oo . Here the application of
the Liopital’s rule results in the following:

(1+i)

i Ko(l+i)' Kol +
%001+SO(1+1Y'—1) aw0+50(

)-0) S

It should be noted that the semblance of value at the
initial moment graphically illustrates the fact discussed
above, i.e. the exponential function (3) making a sepa-
rate case of the logistic function (6).

Limit interest

It is time to discuss a particular product, i.e. capital,
and its increase in a certain period of time, i.e. interest.
The compound interest as well as the limit interest point
to the difference between the accumulated capital K and
the initial capital K:

P=K-K,,
where P is the interest accumulated during a certain
period.

The expression of the future capital value of the
limit alteration (5) allows for the following:

K, -Ky-(1+i)
K, + Kol +if 1)

P: _Ko.

Then:
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(, - Ko)1+i) 1)
K, -Kol1+iy' -1)

The numerator and the denominator having di-
vided by K, the result is:

(-804 -1).

C s, li+i) 1)

Another division by ((1 +i)' —1) marked as follows:

P=K,

(®)

S S u, leads to such expression of the limit in-
(1+i)" =1
terest:
1-S
P = KO_ 0 .
u, +S,

When the congestion S is constant, the quantity of
interest depends on the accumulation factor u,, which,
in its turn, is the function of the interest rate and accu-
mulation duration. It decreases both with the increase of
the interest rate and of accumulation time. The quantity
of the interest also has its limit, which is equal

tOKo(l_So)/So .

Application of limit accumulation models

Practically, the problem of the logistic (limit) accu-
mulation of the capital has not yet been investigated. It
was determined by several important reasons. First of
all, no adequate models have been worked out. Obvi-
ously, the logistic models are much more complete than
the exponential ones and therefore their analysis is pos-
sible only with the invocation of information technolo-
gies. Finally, the logistic models should be mostly ap-
plied for the closed economic systems; however, the
mentioned condition is fully realized rather rarely.

The statistic analysis of the long-term economic de-
velopment of some systems allows for the conclusion
that, in certain periods, there exist the indications point-
ing to the fact of approaching a certain limit. Such con-
clusions are found in scanty publications on the men-
tioned problem (Ferreira, Eidelman, 1998).

Let’s consider the case of the economic structure in
Brazil. For a long time, it was isolated from external
resources. Carlos Feu Alvim based his analysis of the
GDP in Brazil in 1947-1992 on this very fact. By having
employed the phenomenological methodology and
based his research on the analysis of the national indi-
ces, the author arrived at the conclusion that, at the end
of the investigated period, the accumulated capital
hardly reaches 7% of the value, which was prognosed
by the exponential model. In 1998 another more pro-
found investigation was carried out by employing simi-
lar methodology and operating with new additional data
(until 1997).

During their investigation Omar Compos Fereira
and Carlos Feu Alvim strove to discover the structural
reasons of the end of ‘the economic miracle’ in Brazil.
The chief hypothesis concerned the capital being the



factor that limited the growth of Brazil’s economic level
(here manpower was not sufficiently exploited). The
given conclusion is that up to the seventh decade the
economic structure of Brazil may be described by the
logistic model, which reveals that the rate of the eco-
nomic growth is stemmed by the limit capital. The re-
searchers offered an insignificantly modified variant of
the classical logistic function (7). It goes without saying
that the employment of the logistic function (6) brings
more precise forecasting results.

Determination of the regression coefficients

In the application of the logistic models of accumu-
lation, the determination of the regression coefficients
comes to be one of the most important and problematic
tasks.

Let’s define the conditions under which one model
of capital accumulation (CAM) might be replaced by
another, i.e. more elementary model. When the maxi-
mum value of the capital limits its growth insignifi-
cantly, the exponential analytic model may be em-
ployed. As has been observed above, the values calcu-
lated by both models at the beginning of the growth
period are rather close. It has been also noted that the
exponential model solely makes a separate case of the
logistic model. Therefore having the time line of the
values of the capital and knowing that the variable
quantities operate according to the law of the limit
growth allows for the description of the initial values of
the time line by the exponential model. Furthermore, the
coefficients of the latter model may be used in the con-
struction of the logistic model.

By applying the above mentioned conclusions, the
logistic model coefficients K, and i will be calculated
with the help of the lowest square method and according
to the exponential model (Boguslauskas, 2004). The
expression of the exponential CAM y = a(1+i)" will
serve as the regression equation:

Y, =a(l+i)"
L =a(l+i)"
Y, =al+i)"

The lowest square method allows for the description
of the differences between the theoretical and experi-
mental values and for the structuring of the sum of de-
viation squares:

u= (5’1 - y1)2 + (5’2 - y2)2 t..t (j’n - yn)2

By having inserted the modelled y values of the de-
viations and replaced (1+i) by r (1+i = r) the function is
described as follows:

u=(a-r* =y +@r® -y, +..+@r"-y,) (1)

The function (11) possesses two variable quantities,
i.e. a and r.

11

Let’s apply the obtained function to the calculation
of the regression coefficients in the solution of a par-
ticular problem. Table 1 presents the dynamics of the
GDP in Lithuania in 1992-2003 (in mln Lt; Department
of Statistics, 2004). The data of the period from 1992 to
1995 is taken for the determination of the coefficients of
the exponential function:

Table
Lithuania’s GDP in 1992-2003
Years 1992 | 1993 | 1994 | 1995 | 1996 | 1997
GDP 3406 | 11590 | 16904 | 25568 | 32290 | 39378
Years 1998 | 1999 | 2000 | 2001 | 2002 | 2003
GDP | 44377 | 43359 | 45526 | 48379 | 51633 | 55737

Relying on the mentioned data of the initial four
years, Fig.4 shows the dependency of the sum of devia-
tion squares on the growth rate coefficient r at different
a values. Fig. 4 demonstrates that this function has its
minimum when r is between 1.5 and 2.0 and a is close
to 6000.
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Figure 4. The dependency of the sum of deviation
squares on the growth rate coefficient »
at different a values

In order to find out the precise minimum of the func-
tion as well as the coefficients in-search it is necessary to
calculate the function’s derivatives with respect to sepa-
rate variable quantities and to equate them to zero.

The calculation of the derivatives leads to the fol-
lowing:

0
—u=2~(a-rx‘ —y)rt+2-(a-r* -y, r* +
Oa
et 2-(a-r =y, )r"
ou -
—=2-(a-r" —y)-a-x r"+
or
+2-(a-r —y,)a-x,re +...
wt2-(a-r =y ))ax,r

The lowest values should be found among the solu-



ou
aa
tions of the system: a . The rearrangements and
ou
—— =0,
or

the solution of each equation of the system with respect
to the unknown quantity result in:

n

2.

(rxj yj)
j=1
a=r——;

n
>

jl

Z(xj'yj'FXf)
:j=1 .

i(xj )

J=1

a

The equalization of the equations’ right parts and
certain slight modifications lead to the following:

D ) D)= 2 Y ) =0 (12)
j=1 j=1 Jj=1 J=1

The analytical solution of this equation is rather
complicated, especially when n is considerably higher
than 2.0. The most convenient way of its solution is
found in the use of information technologies. The au-
thors see one of such solutions in the creation of the
iteration cycle during which the value of the regression
coefficient is altered until it satisfies the formed equa-
tion at necessary precision.

The solution of the obtained equation and the find-
ing of the coefficient allows for the calculation of the
second regression coefficient a. The value of the coeffi-
cient a is determined due to one of the system’s equa-
tions. In the analysed example, the values are as fol-
lows: r = 1.628714 and a = 6049.49.

In the estimation of the obtained values of the coef-
ficient, the specificity of the problem should be accen-
tuated. In fact, the statistic data reflects the situation of
the transitional economic period. On the other hand, the
values of the regression coefficients r and a depend not
only on the statistic data acquired during particular ob-
servations but also on the number of the observed ele-
ments employed in the concrete calculation.

When possessing the necessary r and a coefficients,
it is important to determine the final logistic model’s
coefficient K,,. Let’s define K = Y, and K, = z. As be-
fore, let’s presume that / + i = r and Ky = a. Then the
logistic function of accumulation will read as follows:

yo_azr
z+a-(r'=1)

From this it is found out that the values of the func-
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tion conforming to the arguments x,, x,, ...,x, are:

a-z-r"
z+a-(r"—1)

>

1

X2

YA _ a-z-r

2~ X
z+a-(r* =1

The unknown regression coefficient z may be calcu-
lated by employing the lowest square method:

v=,-Y)2+(,-Y,)2 +..+(, -Y,)?

Finally, by inserting the modelled values of the
variable quantities the required function is obtained:

a.Z.rxl

= —_Yl)z +
z+a-(rs—1)
&_YZ)Z +...+
z+a-(r»-=1)
Ty
z+a-(r+«—1)

In order to discover the minimum of the function it
is necessary to calculate the function’s derivate accord-
ing to z and to equalize it to zero:

2—2- a-z-rv  ooar-ra-(rv—1)

dz z+a-(rv=1) " (z4a-(ro —1)?
cTeph 2.p% (rx —

12 a-z-r a?-rx -(r 1)

z+a-(rm =1 7 (z+a-(re—1)2
a.Z.rX,, _ ) a2.rx,, .(rx,, _1) _
z+a-(ro=1) " (z+a-(rv-1)?

+2-(

Insignificant modifications allow for a reduced ex-
pression of the equation:

n

P

Jj=1

az-ri-(rvi =1
(z+a-(rv =D)?

a-z-r'
z+a-(rvi =1

-Y))( =0

In order to find out the regression coefficient z the
equation must be solved and the value z, by which the
equation is satisfied, must be obtained. It is convenient
to solve such an equation with the help of the digital
method. Digital methods are iteration procedures where
the results achieved during each step are compared with
the earlier achieved ones to choose the best solution.

Thus, the choice of the accuracy of the variable
coefficient z and of the required number of the cycle’s
iterations allows for the obtaining of the sought value.
In this case, the determined z value may be considered



optimal.

The data of the time line used for the determination
of the coefficient z also embraces the data employed for
the determination of the coefficients @ and r. In other
words, the latter data overlaps with the former. Then the
obtained coefficients important for the statistics of the
GDP in Lithuania are inserted into the logistic regres-
sion equation:

 56877,5-6049,49-1,629'
56877,5+56877,5-(1,629' 1)

The statistic data of the GDP and the logistic regres-
sion curve are presented in Fig. 5:
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Figure 5. Regression curves of Lithuania's GDP

Fig. 5 also shows the operation of the exponential
function obtained on the basis of the initial data:

K =6049,489-1,629 .

It apparently demonstrates that the forecasting di-
rected into the remote future causes considerable devia-
tions (e.g. in the middle of the interval, the error ex-
ceeds 100%).

Conclusions

Logistic (limit) models are applied for the investiga-
tion of the alteration of some kinds of population. The
majority of populations, especially capital, distinguish
by their reproductivity, i.e. the capacity to get restored,
to renew, and expand (multiply). In the case of the capi-
tal, it manifests itself in the interest that participates in
the creation of the capital of new generation (together
with the initial capital). Therefore, until restrictions do
not occur, it might be considered that the capital is
growing in a constant rate. The exponential models are
used for the modelling of the alteration of the perma-
nently growing product. However, such models are not
always sufficiently precise and convenient for practical
use. The analysis of the models of accumulation has
lead to the following conclusions:

« The logistic models allow for the modelling of
the development of the populations whose growth
is limited by the insufficiency of resources. The

13

logistic models of accumulation reflect the dy-
namics of the population’s (capital’s) growth
more precisely;

« The exponential model makes a separate case of
the logistic (limit) model;

o The expression of capital in a closed system
demonstrates the slackening character and has its
limit equal to its maximum value;

« The lowest square method used to determine the
regression coefficients may be applied gradually.
For this purpose, it is convenient to employ the
exponential function as a separate case of the lo-
gistic function;

o The logistic models may be used in the construc-
tion of the regression coefficient of a particular
object.

Such proposition is worked out on the logistic re-
gression equation of the GDP in Lithuania that was
made on the basis of the statistic data from twelve
latter years.
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IPOU3BOJACTBEHHBIX

Stasys Girdzijauskas, Vytautas Boguslauskas
Logistiniy kaupimo modeliy taikymo galimybés
Santrauka

Dauguma besivystanciy populiacijy, priklausomai nuo jy prigim-
ties, naudoja kokius nors isteklius. IStekliai savo ruoztu, priklausomai
nuo jy santykio su pacia populiacija, gali buiti tiek baigtiniai, tiek
begaliniai. Logistiniai kaupimo modeliai yra paremti senkanciy iStek-
liy jtaka populiacijos augimo procesui. IStekliy ribotumas, savo pri-
gimtimi blidamas vienas svarbiausiy daugelio sistemy vystymosi
veiksniy, daZnai per menkai vertinamas, ir Tai yra ne tik dél to, kad
dauguma iStekliy yra sunkiai iSmatuojami, bet ir dél to, kad, triikstant
patikimy ir patogiy prognozavimo priemoniy, kartais nejmanoma net
apytikriai numatyti rezultatus.

Darbe sutelktas démesys i specifines populiacijas, t.y. populiaci-
jas, gebancias augti natiraliai, { tokias, kurios augdamos pacios duo-
da pagal ta patj principa didéjantj prieaugj. Natiralus augimas — tai
toks augimo greitis, kai kiekvienu laiko momentu jis proporcingas
populiacijos dydZiui: kuo didesné populiacija, tuo ji grei¢iau auga.
Tokioms populiacijoms gali bti priskiriamas kapitalas, pinigy srautai
ar kitas panaSias savybes turintis produktas. Tai leidzia uZraSyti
paprastas diferencialines lygtis, igalinané¢ias sudaryti patogius popu-
liaciju vystymosi modelius.

Jei K — tam tikro produkto dydis laiko momentu 7, o to produkto
augimo greitis yra kintamuosius ¢ ir K siejancios funkcijos kitimo

greitis, tai, laikydami, kad kintamuosius sieja proporcingumo koefi-
cientas i, gausime, kad dK/dl =i-K . Issprendg $ia lygti ir jverting
pradines salygas, kad laiko momentu ¢ = #, produkto dydis K lygus
pradinei jo reik§mei Ky, randame produkto kiekio K iSraiska

K=K,-¢e"

Tuo paciu principu galima sudaryti ir iStekliy ribotuma jverti-
nancius augimo (logistinius) modelius. Logistiniy modeliy yra jvai-
riy. Kai kurie juy placiai taikomi biologiniy sistemy tyrimui. Taciau
ekonominiy rei$kiniy nagrin¢jimui Sie modeliai sunkiai pritaikomi. Ju
trikumas — néra nattiralaus peré¢jimo i sudétiniy procenty iSraiska.

StatistiSkai nagrinéjant kai kuriy sistemy ilgalaiki ekonominj
vystymasi, pastebéta, kad atskirais periodais egzistuoja artéjimo prie
tam tikros ribos pozymiai. Izoliuotoje aplinkoje platesnés apimties
ekonominj eksperimenta atlikti yra sudétinga, todél teko nagrinéti
pasauling patirtj, ieSkoti realiy praktiniy pavyzdZiy. Zinoma, kad
Brazilijos ekonomika ilga laika buvo izoliuota nuo iSoriniy istekliy.
Ivertinus ta fakta, Karlas Alvimas (Carlos Feu Alvim) ir Omaras
Fereira (Omar Compos Ferreira) atlikto Brazilijos BVP augimo tyri-
mus. Naudodami fenomenologing metodologija ir remdamiesi nacio-
naliniy rodikliy analize, autoriai pri¢jo iSvada, kad laikotarpio pabai-
goje sukauptasis kapitalas siekia vos 7 proc. tos reik§més, kuri buvo
prognozuojama remiantis rodikliniu modeliu. Buvo ieSkoma struktii-
riniy “Brazilijos ekonominio stebuklo” pabaigos priezas¢iy. Pagrin-
diné hipotezé ta, kad ekonomikos augima ribojantis veiksnys yra
kapitalas (darbo jéga Brazilijoje buvo iSnaudojama ir taip nepakan-
kamai). Taigi Cia prieinama iSvada, kad nagrinéjamo laikotarpio
ekonomika gali biiti apraSoma logistiniu modeliu, kur augimo tempa
stabdantis veiksnys yra ribinis kapitalas. Kapitalo augimo modelia-
vimui tyrimo autoriai sifilé mazai modifikuota klasikinés logistinés
funkcijos variantg.

Siame darbe naudojamas patobulintas logistinis augimo modelis.
Jis turi pertvarkytus koeficientus ir yra bendriausias tokio tipo popu-
liacijy augimo modeliy atvejis:

K, Ky (L+i)
K, +Ko\1+i) -1

(¢ia Ko — pradiné populiacija, iSreikSta jos kieki jvertinanciais
vienetais, K,, — maksimali (ribin¢) populiacijos reik§mé, i — augimo
norma, t— augimo trukmé, iSreikSta tais pat laiko vienetais kaip ir
augimo laikas). Placiai iki $iol kapitalo augimui modeliuoti taikyta
sudétiniy procenty taisykle g — K, .(1+,-)' yra atskirasis §io logistinio
modelio atvejis. Parodoma, kad tipiné matematinéje analizéje varto-
jama logistiné funkcija g — Km/(l‘Le% X) skiriasi nuo nagrinéjamos

funkcijos ir néra Sios funkcijos kuris nors atskirasis atvejis. Reikia
pazymeéti, kad musy siilomas patobulintas logistinis augimo modelis
duoda tikslesnius prognozés rezultatus, nei klasikinis.

Vienas svarbiausiy sistemos augimo rodikliy yra per tam tikra
laika sukauptos paltikanos. Logistinis modelis taip pat leidZia apskai-
Ciuot tokias palikanas. Ribinés paliikanos P yra sukauptojo K ir
pradinio K kapitaly skirtumas:

P=K-K,-

Sutrumpinta tokiy paliikany iSraiska yra

1—
P=K0780 ’
u, +S,
kur S, :KO/Km — pradinio prisotinimo koeficientas, o

u"=1/((1+i)"—1)- Esant pastoviam prisotinimui Sy, paliikany

dydis priklauso nuo kaupimo veiksnio u,, kuris savo ruoZtu yra
palikany normos ir kaupimo trukmés funkcija. Jis maZzéja, tiek
didéjant palikany normai, tiek kaupimo laikui. Palukany dydis taip
pat turi riba, lygia

K(l(l_ Sy )/So ’

Straipsnyje pateikiama ne tik teoriné augimo modeliy, apibrézty
iStekliy i§senkamumu, analiz¢, bet ir tokiy modeliy praktinio taikymo
galimybiy jvertinimas. Taikant logistinius kaupimo modelius, viena
svarbiausiy ir problemiskiausiy uZduociy yra regresijos koeficienty
nustatymas. DaZniausiai tam naudojamas maZiausiy kvadraty meto-



das. Uzdavinio sprendimo sunkumas tas, kad Sis modelis yra netiesi-
nis ir turi ne maziau kaip tris neapibréZtus koeficientus: Ko, K,, ir i.
Todél maziausiy kvadraty metoda logistinio modelio regresijos koefi-
cientams nustatyti siiloma taikyti palaipsniui. Pradiniu laiko momen-
tu populiacijos reik§més, apskaiciuotos remiantis logistiniu ir ekspo-
nentiniu modeliu, yra labai artimos. Todél patogu, panaudojus atski-
raji logistinés funkcijos atveji— eksponenting funkcija, nustatyti
pradinius logistinés funkcijos koeficientus: pradini populiacijos dydi
Ky ir augimo grei¢io koeficienta i. Toliau, jraSius Siuos duomenis {
bazing iSraiSka, nesudétinga apskaiciuoti ir ribing (didZiausia) popu-
liacijos reikSmg.

Teoriniy apibendrinimy teisingumas pagrindZiamas konkretaus
objekto regresijos lygties sudarymu. Tam panaudojami 1992-2003
mety Lietuvos BVP statistiniai duomenys. Pirmiausia eksponentinés
funkcijos koeficientams nustatyti imami pirmujy ketveriy mety duo-
menys. Jais remiantis, sudaryta nuokrypy kvadraty sumos priklauso-
mybé nuo augimo greifio koeficiento, esant skirtingoms pradinéms
populiacijos reik§méms. [sigiling pastebime, kad §i funkcija turi
minimuma, esantj tarp 1,5 ir 2, kai pradiné populiacija yra artima
6 000. IeSkant tikslaus Sios funkcijos minimumo, apskaiciuojamos
funkcijos iSvestinés atskiry kintamyjy atzvilgiu ir jos prilyginamos
nuliui. Palyging deSiniasias lygciuy puses ir atlikg neZymius pertvar-
kymus, gauname $ia lygti:

Zn:(rx7 ‘yj)'i(xj 'rh])_irh} 'Zn:(xj y;r’) =0
j=1 Jj=1 Jj=1 Jj=1

Analitinis Sios lygties sprendimas yra gana keblus, ypac kai
laipsnio rodiklis n daug didesnis nei 2. Patogiausia tokius uzdavi-
nius sprgsti naudojantis informacinémis technologijomis. Vienas i§
galimy sprendimo biidy — iteracinio ciklo sudarymas, kurio metu
kiekvienoje iteracijoje kei¢iama vieno i§ regresijos koeficienty
reik§mé tol, kol ji galiausiai reikiamu tikslumu atitinka sudarytaja
lygti. Antrojo koeficiento reik§mé nustatoma iSsprendus viena i§
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pradinés sistemos lygc€iu, kurioje pirmojo koeficiento reik§mé jau
yra Zinoma. Tokiu budu misy nagriné¢jamame pavyzdyje Sios
reik§meés yra: augimo grei¢io koeficientas — 1,628714, o pradinio
kapitalo reik§mé — 6049,49 min. lity.

Turint minétus du koeficientus, apskaiCiuojamas ir paskutinis
logistinio modelio koeficientas K. Jis randamas, logistinés lygties
iSvesting prilyginus nuliui

n

D (¢

J=1

a-z-r’ A G )
-1 (z+a-(r" -1)’

Ir ankstesniyjy, ir Sios lygties sprendimui taikome apytikslius
metodus. Atlikg reikalingus apskaiciavimus, gauname, kad paskuti-

niojo koeficiento reik§mé yra 6049,49.
Tada logistinis Lietuvos BVP augimo modelis buity:

_56877,5-6049.49 1,629
6049,49 +56877,5 - (1,629 '~ 1)

—Y))-( =0

z+a-(r"

Vertinant gautasias koeficienty reik§Smes reikia pabrézti uzda-
vinio specifika: statistiniai duomenys atspindi pereinamojo ekono-
minio laikotarpio situacija. Kita vertus, regresijos koeficienty K ir i
reik§Smés priklauso ne tik nuo statistiniy duomeny, gauty atskiry
stebéjimy metu, bet ir nuo stebiniy skaic¢iaus, panaudoty konkre-
¢iame skaiciavime.

Apibendrinant daroma i$vada, kad logistiniai kaupimo modeliai
tiksliau atspindi populiacijos (kapitalo) augimo dinamika ir gali buti
taikomi ten, kur reikia jvertinti senkancius iSteklius. Eksponentinis
modelis yra tik atskiras logistinio modelio atvejis. MaZiausiy kvadra-
ty metoda logistinio modelio regresijos koeficientams nustatyti gali-
ma taikyti palaipsniui.

Raktazodziai: populiacija, produktas, modelis, senkantys istekliai, sudétinés
palitkanos, logistinis augimas, bisimoji verté, maZiausiy
kvadraty metodas, regresijos lygtis, bendrasis vidinis produk-
tas (BVP)

The article has been reviewed.

Received in October, 2004; accepted in February, 2005.



