
 - 32 - 

ISSN 1392 – 2785 ENGINEERING ECONOMICS 2008. No 5 (60) 
ECONOMICS OF ENGINEERING DECISIONS 

Bayesian Reasoning in Managerial Decisions on the Choice of Equipment for the 
Prevention of Industrial Accidents 

Edmundas Kazimieras Zavadskas, Egidijus Rytas Vaidogas 

Vilnius Gedimino technikos universitetas 
Sauletekio al. 11, LT 10223 Vilnius 

The managerial problem of the choice among 
alternative protective equipment used to prevent industrial 
(technological) accidents is considered. The choice takes 
into account potential failures of the equipment or, 
conversely, the equipment reliability. Such failures can 
substantiate contributors to escalations of industrial 
accidents. The problem of the choice is formulated in the 
form of a multi-attribute selection. 

The probability of failure of alternative equipment sets 
is used as an attribute of the selection problem. An 
estimation of this probability by means of Bayesian 
statistical theory is considered. Bayesian prior and 
posterior distributions are applied as an estimate of failure 
probability. These distributions are incorporated in the 
selection problem as uncertain attributes. Development of 
prior distributions of individual alternatives is discussed in 
detail. The prior and posterior distributions are treated as 
measures of the epistemic uncertainty (state-of-knowledge) 
related to unknown values of failure probabilities. 

The modelling of uncertainty related to the failure 
probability corresponds to the classical Bayesian 
approach to risk assessment. It is suggested to apply the 
uncertain failure probabilities to developing risk profile 
for each of the alternative equipments and to incorporate 
the risk profile to the multi-attribute decision making. 

The epistemic uncertainty in the failure probabilities 
and elements of risk profile is quantified by means of 
Bayesian statistical theory. It is shown that this uncertainty 
can be reduced by applying Bayesian updating procedure 
when new data on equipment failures is obtained. 
Probable cases of the application of this procedure are 
discussed. This discussion relates the acquisition of the 
new statistical evidence used for Bayesian updating to the 
moments, at which managerial decisions are made. 

It is suggested to solve the problem of the multi-
attribute selection with uncertain attributes by means of 
uncertainty propagation. This propagation is 
accomplished by means of Monte Carlo simulation. The 
epistemic uncertainty related to the attributes is 
transformed into a discrete distribution of epistemic 
uncertainty. Probability masses of this distribution express 
the chance of individual alternatives to be selected as the 
best one. The result of this selection will be the alternative 
with the largest epistemic weight. 

The potential field of the application of the proposed 
approach is the management of technological risks present 
in many industrial facilities and non-industrial 
installations (dwellings, offices, public places) which are 
subjected to the hazard of accidents. The approach 

proposed in the paper allows to make managerial 
decisions which take into account the reliability of 
protective equipment. In addition, this approach will allow 
to utilize data on equipment failures encountered in the 
past. Such data is usually scarce and expensive. The 
Bayesian framework is best suited for the application of 
such data. 
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equipment, failure, multi-attribute selection. 

Introduction 

The construction and exploitation of many industrial 
installations and transportation facilities involve hazards, 
the potentiality of which can range between common 
occupational accidents and devastating disasters (major 
accidents) (Babinec, Ivanek, 2005; Hola, 2007; 
Mitropoulos, Abdelhamid, Howell, 2005; Xinzheng, Ning, 
Jianjing, 2004, Vaidogas, 2006). Examples of the latter 
events are well-known: heavy fire, explosion, massive and 
sudden release or gradual leak of toxic materials, 
undetected release of flammable or explosive gases in 
closed environments, major failures of structures and 
geotechnical objects and other accidents caused by extreme 
natural phenomena, equipment failures, or human errors. 
Cost of such accidents can be very high (Khan, Amyotte, 
2007; Fewtrell, Hirst, 1998; Venart 2004, 2007). 

In European Union, most industrial installations 
require mandatory risk assessment and development of 
preventive measures (European Council, 1996). 
Nevertheless, the MARS database records that, 
approximately 30 major accidents happen each year within 
the industry sectors covered by the Seveso 2 directive 
(ETPIS 2007). These accidents are not major contributors 
to the overall statistics but have a major impact on industry 
and society and thus on sustainable development (Casal, 
2008; Vaidogas, Juocevičius, 2008). As a consequence, 
quantitative risk assessment (QRA) and risk management 
have to take a proper account of multiple hazards which 
threaten critical installations and can develop into major 
accidents. The risk management is often performed in 
relation to a QRA (Kumamoto, Henley, 1996). The phase 
of QRA is more formal and objective than the management 
phase, which is based on judgement and heuristics and so 
is more qualitative and subjective (Rutkauskas, 2008; 
Startien÷, Remeikien÷, 2007). 

Risk management is based on safety culture, quality 
management and proved engineering practices (IAEA, 
1988). The process of risk management includes accident 
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prevention (or failure prevention & propagation 
prevention) and accident management (or onsite and offsite 
consequence mitigation). As Kumamoto and Henley 
(1996) have put it, failure prevention is similar to 
prevention of infection with a disease, propagation 
prevention corresponds to outbreak prevention, and 
accident management resembles treatment and recovery 
after outbreak. If the propagation prevention works 
successfully, perturbations of technological process and 
incipient failures of production equipment will develop 
into a serious situation and yield an accident. Abnormal 
occurrences, ranging from minor disturbances to unlikely 
accident sequences, will not cause serious consequences, if 
measures of propagation prevention remain healthy and 
operate correctly. These measures include equipment 
which is installed to carry out a specific preventive 
function: to extinguish fire, to protect by means of physical 
barrier, to provide tolerance for failures etc. 

If protective equipment fails to carry out its function 
when demanded or abnormal occurrence develops to 
events beyond the design basis of the equipment, the 
accident sequence continuous to develop and may lead to 
serious consequences. Therefore, a crucial part of 
manager’s overall effort in reducing technological risk 
should be acquisition and implementation of reliable, safe, 
and effective protective equipment (Hadad, Laslo, Ben–
Yair, 2007; Kazlauskien÷, Christauskas, 2007; Vaidogas, 
2007). Such equipment is usually produced and offered by 
some number of competing manufacturers able to assure 
different levels of reliability. Therefore the manager 
responsible for the plant safety will often face the problem 
of the choice among several alternative arrangements 
(types) of protective equipment or, briefly, among several 
alternatives. 

The larger are consequences of protective equipment 
failure the stronger can be the influence of its reliability on 
the choice of particular alternative arrangement. 
Quantitatively, the reliability-oriented choice can be 
expressed as a problem of multi-attribute selection (MAS) 
(Vaidogas, Zavadskas 2007; Vaidogas, Zavadskas, 
Turskis, 2007). One of the main problems of such selection 
is the estimation of failure probability of the alternatives. 
Accidents demanding the operation of protective 
equipment are relatively rare events. Failures of the 
equipment to operate on demand are even more rare 
events. Therefore the main practical approach to the 
estimation of the failure probability is the Bayesian 
approach to QRA (e.g. Aven, 2003; Aven, Pörn, 1998; 
Kelly, Smith, 2009). If the problem of the multi-attribute 
selection has to take into account the failure probability or 
related characteristics (e.g. total cost or total benefit), this 
approach can be used for estimating this probability in 
terms of an epistemic uncertainty distribution. The present 
paper considers how to develop this distribution in the 
framework of QRA and to apply it  in the general context 
of MAS. 

Industrial accident 

The exposure to hazards during construction, 
installation, calibration, testing and exploitation of 
hazardous facility may vary considerably and depend on 

individual industry. However, the construction and 
installation phases are usually less organised and stable 
processes than exploitation and so more predisposed to 
accidents. In addition, construction process can be prone to 
hazards which are not inherent in the later exploitation. 
Thus the risk related to construction stage can be higher 
than the one accompanying the exploitation. 

The exposure to hazards during construction and 
installation of facility is, naturally, much shorter than 
during its subsequent exploitation. However, construction 
is usually less organised and stable process than 
exploitation and so more predisposed to accidents. In 
addition, construction process can be prone to hazards 
which are not inherent in the later exploitation. Thus the 
risk related to construction stage can be higher than the one 
accompanying the exploitation. One the other hand, the 
time of exposure to hazards during exploitation of 
hazardous facility exceeds by far the exposure time during 
construction. 

An accident happens as a sequence of adverse events 
which escalate into a harmful event (process) directly 
causing catastrophic consequences (e.g. Høiset, Hjertager, 
Solberg, Malo, 2000; Kaszniak, Holmstrom 2008; Skelton, 
2001). An accident sequence is called a scenario. QRA 
uses, among other things, event tree and fault tree 
techniques to identify possible accident scenarios and 
consequences. Figure 1 shows a number of such scenarios 
aggregated in an event tree diagram. They lead to 
consequences, some of which can be considered disastrous 
(consequences O1 to O4 and O8). The event tree given in 
Figure 1 demonstrates the negative contribution of 
individual protective equipment failures and combinations 
of these failures to accident escalation. 

An “embedding” of the protective equipment failures 
in the logical modelling of accident scenarios allows to 
answer three questions: 
1. Are there any accident scenarios which require 

installation of protective equipment? 
2. What specific equipment is necessary to prevent 

propagation of the accident? 
3. What is the role of protective equipment failures in 

individual scenarios of accident, especially, in 
potential critical escalation leading to catastrophic 
consequences? 
These questions arise due to the simple fact that 

components of the protective equipment are not fail-safe 
technical objects. There are numerous examples when 
these components failed to work on demand and so 
contributed to consequences of major accidents. The 
disaster on board the offshore platform Piper Alpha in 
1988 is a sad and impressive example of such an accident 
(e.g. Paté-Cornell, 1993). Managerial decisions concerning 
the acquisition installation and exploitation of this 
equipment should take into account this possibility of the 
protective equipment failure. 

Failures of equipment used for accident 
prevention 

The major accident can cause multiple casualties and 
considerable damage to structural and non-structural 
property. A proper planning of construction and 
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exploitation process and organisation of dangerous 
production operations requires recognising, controlling, 
and, if possible, eliminating hazards. If a complete 
elimination is impossible, automatic protective equipment 
must be installed to stop a possible propagation of an 
accident and/or protect against a disastrous physical 
phenomenon, if this takes place. Obvious and often used 
examples of such equipment are: 
� Automatic detectors of heat, smoke, and toxic gases. 
� Ventilators used to remove burning products or toxic 

gases. 
� Automatic sprinklers. 
� Automatic alarm systems. 

In the case where the production process involves the 
potentiality of a major accident, the role of protective 
equipment protecting against this accident becomes 
critical. It is natural to expect that in the case of an accident 
(early escalation of events which can end up in an 
accident) the protective equipment will not fail to perform 
its function. For many, this fail-safe behaviour is taken as 
granted. However, the possibility of failure is constantly 
present and is not always negligibly small. Failures of 
automatic sprinklers used in conventional buildings and 
nuclear power facilities serve as an illustration of this 
problem (Hauptmanns, Marx, Grünbeck, 2008; Kala, 2008; 
Rasbach, Ramanchandran, Kandola, Watts, Law, 
2004: 236; Siu, Apostolakis, 1988). 

In many cases, the worst-case scenario of an accident 
will be a result of a combination (sequence) of protective 
equipment failures. These are usually highly random, low-
probability events. The sequence of the failure events E2 to 
E5 shown in Figure 1 will result in the worst consequences 
O1 expressed as 
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The random nature of the equipment failures Ek and the 
very possibility of such failures raise the problem of 
reliability. Although usually explicit measures of reliability 
(probability of fail-safe service) are not known for users of 
the equipment, everyone expects that his/her equipment 

has a sufficiently high level of reliability. Failures of 
protective equipment, Ek, can be critical. Therefore 
decisions concerning, acquisition, installation, and running 
of this equipment should take into account explicit 
measures expressing its reliability. 

Generally the reliability is expressed through failure 
probability, availability, and reparability. The answer to 
the question, which measure should be used for decision-
making, depends on the type of equipment and particular 
situation, in which the accident can take place. This 
measure can be related to three typical failure modes 
(Kumamoto, Henley, 1996: 60 and 62): 
� Demand unavailability (epressed by conditional 

probability that equipment will not start to operate 
given an emergency/accident; demand failure, Ek1). 

� Failure to work in the course of emergency / accident 
after equipment starts operate (run failure, Ek2). 

� Equipment does not perform its protective function 
even if it is not in a failed-state (operation during 
complex events below the design basis of equipment, 
Ek3). 

� Unavailability due to maintenance and testing, Ek4. 
The above list of failure modes is not exhaustive. 
However, one can write with some simplification that the 
probability of equipment failure, pfi, is a probability that at 
least one of these failures will take place: 
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where Ek–1, Ek–2, … are events preceding the failure event 
Ek. The first of them generates the demand for protective 
equipment. For instance, Ek–1 means “spread of fire in 
tunnel under construction” (Figure 1). 

The failure probability pfk is a feature of the equipment 
used to characterise it along with technical and economic 
parameters. It can be considered a physical property of the 
equipment and used for its choice in cases where the 
possibility of failure is of concern. 

Spill of
flammable

material

Flammable
concentration

of gases

Automatic
alarm fails

Automatic
ventilation

fails
Ignition

Automatic
sprinklers

fail

E0

yes, E5

no
yes, E4

no

yes, E3
yes, E2

no

no

no

yes, E5

no
yes, E4

no

yes, E1

Outcome
(consequences)

O1: fire/explosion, casualties

O2: extinguishing, injuries

O3: intoxication casualties/
      injuries
O4: fire/explosion,
      no casualties

O5: extinguishing, no injuries

O6: gasified environment,
      no intoxication

no

yes, E2

O8: intoxication casualties/
      injuriesyes, E3

O9: gas-filled environment,
      no intoxication

O10: exhaustion of gas

no O7: exhaustion of gas

pf1

pf2

pf3

pf4

pf5

1−pf5

1−pf4

1−pf3

1−pf2

1−pf3

1−pf2

1−pf1

1−pf5

pf5

1−pf4

pf4

 

Figure 1. Scenarios of an accident initiated by a spill of flammable material in a tunnel 
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The complexity of protective equipment, non-non-
negligible possibility of its failure as well as a steady 
supply of equipment by different competing producers 
(lessors) turns the choice of specific equipment into a non-
trivial task. 

Choice among alternative sets of protective 
equipment 

When the manager has to choose specific protective 
equipment, many, sometimes contradictory, attributes 
characterising this equipment must be considered 
simultaneously. The field of management science has long 
dealt with the problem of this kind. They developed MAS 
also known as multi-criteria decision making and 
abbreviated to MCDM (e.g. Triantaphyllou 2000, 
Zavadskas, Liias, Turskis, 2008). 

Applications of MAS methods in real world problems 
are numerous and in very different fields (e.g. Figuera, 
Greco, Ehrgott, 2005: part VII). These applications include 
a combined use of MAS and risk analysis methods (Pires, 
de Almeida, Lemos, 2005; Vaidogas, 2008). We think that 
methods of MAS can be applied to problems where a 
decision-maker must evaluate, rank, or classify alternative 
protective equipment by two or more relevant attributes. 
Examples of such alternatives are 
� Equipment belonging to basic different types (e.g. 

wet-pipe sprinkler system, dry-pipe sprinkler system 
or deluge sprinkler system). 

� Equipment of the same type and function produced 
and installed by different companies and having 
differed history of recorded failures (e.g. ventilation 
system sold by competing producers). 

� Equipment with key components supplied by different 
producers capable to assure different levels of 
reliability. 
A discrete set of alternative protective equipments 

(alternatives, in brief) can be represented by the vector 
a = (a1, a2, … , ai, … , am)T. MAS can be used to determine 
the best alternative a* or a subset of leading alternatives 
among the ones represented by components of a. 

The quality of ai is evaluated by means of a row-vector 
ci = (ci1, ci2, … , cij, … , cin), the components of which, cij, 
are attributes (characteristics) of ai used for MAS. In terms 
of MAS, the element cij expresses impact of the ith 
alternative on the jth attribute. Data for solving an MAS 
problem is formulated as a m×n decision matrix 

T
1 ],...,,...,[ mi ccc=C  (3) 

Usually the values cij making up different columns of C are 
of different units. To facilitate an inter-attribute 
comparisons, the components cij are normalized. A 

normalized (dimensionless) decision matrix C  is obtained 
from C. 

Formally the alternative protective equipment ai can be 
considered as a typical industrial product characterised by 
usual attributes cij, say, purchase price or renting price, 
effectiveness (time for suppressing hazardous phenomenon), 
number of employees necessary to run or maintain the 
equipment, etc. However, the criticality of equipment 

failures may require to introduce a specific attribute cij into 
the MAS problem. In the simplest case, such attribute can 
be the failure probability pfki, which is estimated for the ith 
alternative ai: 

ci = (pfki, ci2, … , cij, … , cin) (4) 

The failure probability can be introduced into the MAS 
problem indirectly, that is, through the utility function 
specified for the alternatives ai (Vaidogas, Zavadskas, 
2007; Vaidogas, Zavadskas, Turskis, 2007). The non-
probabilistic attributes ci2, ci3, … , cin can be ones used in 
the traditional MAS. 

In many cases, the same safety system can include a 
set of equipments performing different functions and 
having different failure probabilities pfk. The influence of 
these probabilities on system performance can be 
expressed by risk profile widely used in the field of QRA 
(Kumamoto, Henley, 1996). Components of risk profile 
can be applied to specify MAS attributes (Vaidogas, 2008). 
For instance, the risk profile related to the accident 
represented by the event tree shown in Figure 1 will take 
on the form 

Risk ≡ {(Fr(Oj), Sj), j = 1, 2, … , 10} (5) 

with 
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where Fr(Oj) and Sj are the frequency and severity of the 
consequences Oj, respectively; Fr(E0) is the frequency of 
the initiating event E0. Eqs. (5) and (6) imply that the risk 
is a function of the failure probabilities pfk and so is the 
expected severity: 
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The latter value can be used as an MAS attribute. If, say, 
the problem is too choose among alternative sprinkler 
systems ai, which can fail on demand with the probabilities 
pfki, the MAS can be carried out using the attribute vector 

) ,...,, ),, ...,,(( 325f2f1f iniiii cccpppS=c  (8) 

The above vector expresses the contribution of the failure 
probability pf5 to the system risk and so motivates to 
account for the influence of sprinklers on the system 
safety. 

As long as estimates of the failure probabilities pfki (i = 
1, 2, … , m) are available, the MAS problem with the 
attribute vectors (4) or (8) can be solved by means of 
standard deterministic methods of MAS. Unlike other 
attributes, say, price or efficiency, the failure probabilities 
pfki are usually not known in advance. An estimation of 
them can be a difficult problem. 
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Selection with uncertain failure probabilities 

Failures of protective equipment are generally rare 
events backed by scarce historic data. In some cases, 
experience data can by unavailable at all. In such a 
situation, the failure probabilities pfki can be estimated 
using methodological means of QRA. In line with QRA, 
the probabilities pfki can be uncertain in the epistemic 
sense. This means that the probabilities pfki should be 
represented not by single-value estimates but by 
probability distributions quantifying the epistemic 
uncertainty in true, albeit unknown values of pfki. Such an 
approach is called the classical Bayesian approach to QRA 
(Aven, Pörn, 1998). It is based on the Bayesian statistical 
theory. 

The solution of MAS problem will be still possible in 
the case where the probabilities pfki are represented by 
epistemic uncertainty distributions. The best alternative a* 
can be found by applying the procedure of a simulation-
based uncertainty propagation (Vaidogas, Hayashi, 2007). 

In case where the alternative ai is characterised by 
uncertain failure probability pfki, the uncertainty in pfki can 
be expressed by a Bayesian prior probability density 
function πi(p) (p∈[0, 1]). This density can be updated to a 
posterior density πi(p | E) when new evidence E is obtained 
(e.g. Siu, Kelly, 1998; Shafaghi, 2008). This is a standard 
procedure based on the Bayes’s theorem: 

 πi(p | E) ∝L(E | p) πi(p) (9) 

where L(E | p) is the likelihood function. It quantifies the 
conditional probability of observing E given p or is 
proportional to this probability. 

The MAS problem can be solved by applying both 
πi(p) and πi(p | E) (i = 1, 2, … , m). The solution will be 
based on sampling values of pfki from the probability 
distributions represented by πi(p) or πi(p | E) and 
determining the best alternative a* corresponding to the 
current sampled probability values. The sampling should 
be carried out using a Monte Carlo simulation. After it is 
repeated a sufficiently large number of times, the best 
alternative can be chosen using the following criterion 
(Vaidogas, Hayashi, 2007): 

 a* = ai, where i = argmax{Fr1, Fr2, … , Frm}
 (10) 

 
 
where Fr1, Fr2, … are the frequencies of choosing the 
corresponding alternatives a1, a2, … as the best ones. 

Bayesian analysis in specifying input 
information for the choice of equipment 

Developing appropriate prior densities πi(p) can be the 
most controversial part of MAS. However, after πi(p) has 
been specified, the further analysis can proceed according 
to formal steps represented by the expressions (9) and (10). 
Developing the prior distributions πi(p) deserves a 
thorough review. However, such a review is beyond the 
scope of the present paper. This section will provide only a 
short discussion about the densities πi(p) and πi(p | E). 

The operation of protective equipment represented by 
ais commonly occurs as a Bernoulli process which 
generates failures F and successes S of the equipment to 
operate on demand. This process is described by a 
binomial distribution. The failure probability pfki is 
interpreted as a parameter of this distribution. The 
binomial model is appropriate if the equipment failure 
events F are independent and there is no aging of this 
equipment, that is, pfki remains constant over time. The 
protective equipment is normally operated for a short time 
during an accident progression. Therefore this equipment 
normally is not subjected to the intensive and long-lasting 
wear which takes place in the case of constantly operated 
equipment. Thus the aging of protective equipment may be 
considered negligible, at least preliminary. 

In the case of the binomial model, the natural prior 
density πi(p) is a beta density. Lognormal distribution can 
be used as πi(p) if the failure probability pfki is very small 
and the tail truncation above 1 – pfki has a negligible effect. 
Siu and Kelly (1998) and Kelly and Smith (2009) suggest 
recipes for developing πi(p) depending on the availability 
of information on possible values of pfki. 

The new evidence E related to the alternative ai and 
used for the updating of the prior distribution πi(p) may 
have at least three forms 

E = {r failures in nd demands} (11a) 

E = {(r1, nd1), … , (r l, ndl), … , (rk, nds)} (11b) 
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Figure 2. Availability of the evidence E for the Bayesian updating of the equipment failure probabilities at the moment(s) of 
decision-making (multi-attribute selection): (a) in case where decision is made only once; (b) in case of repetitive decisions 
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E = {F, S, S, F, S, S, S, …} (11c) 

 
Where r l is the number of failures and ndl is the number of 
demands at a specific situation or environment l (e.g. fire 
scenario l, operating conditions l, or the maintenance 
practice l). The evidence (11b) comes from s different 
sources and can be applied for developing the hierarchical 
prior distribution. The evidence (11c) is a unique sequence 
of successes and failures recorded during the observation 
of specific equipment during accidents and near misses 
(undeveloped accidents). Accidents demanding particular 
protective equipment are relatively rare events. Therefore, 
the size of the evidence (11) may be relatively small. 

The updating of πi(p) with a specific form of the 
evidence (11) is a formalised procedure which can be 
carried out almost automatically with greater or lesser 
computational effort. Managerial decisions concerning the 
choice of the alternative ai will depend on the availability 
of the evidence E at the decision moment td. The manager 
may face the following cases: 

1. The decision concerning the choice among the 
alternatives ai is made only once with or without the new 
evidence E (Figure 2a). 

2. The decision is a repetitive process, during which 
the new evidence E can be obtained between successive 
decision moments (Figure 2b). 

In the first case, the updating of πi(p) will be a single 
act, whereas the second case will occur as an iterative 
process. The prior distribution πij(p) will represent the 
manager’s knowledge prior to the evidence Ej+1. The 
posterior distribution πi,j(p | Ej+1) obtained with Ej+1 will 
serve as a prior distribution for the next updating with the 
new data Ej+2. 

An example of the first case is the decision concerning ais 
which represent typical or unique protective equipment which 
will hardly be acquired (leased) once again in the near future 
of decision-maker’s company. The protective equipment 
installed in the new plants running the same hazardous 
technology and built one after another during business 
expansion may serve as an example of the second case. 

An acquisition of the new evidence E can be a 
problematic and costly process. The potential source of E 
is the equipment-specific data contained in various 
databases. Ayyub (2003) and Vaidogas (2007) provide a  
review of these databases. As the evidence (11) consists of 
highly specific raw data, in-house failure databases 
developed by companies running or manufacturing the 
equipment under consideration is the probable source of 
this data. If an in-house database is not available, data on  

Table 1. 

 

similar equipment should be used. Such data can be found 
in plant failure databases. Sometimes government 
regulatory agencies require that companies under their  

purview report failures and accidents to them in a 
standardised form. In these cases, the centralised databases 
(e.g. fire accident databases), can be valuable source for 
the acquisition of E. 

Example 

Consider the automatic protective equipment “k” (e.g. 
sprinkler system) which can undergo only the demand 
failure Ek1: it will start or not start to operate given an 
emergency (e.g. fire). Three alternatives of the equipment, 
ai (i = 1, 2 , 3), will be compared. The failure probability of 
the alternative i, pfki = P(Ek1| ⋅), will be interpreted as a 
parameter of a binomial distribution. This distribution 
quantifies the conditional probability of observing r 
failures in nd demands: 
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In practice, a sufficiently large number of demands nd is 
not available to calculate classical statistical point estimate 
r/nd or sufficiently narrow confidence interval of pfki . The 
value pfki is uncertain in the epistemic sense and we need to 
develop the uncertainty distribution πi(p). A convenient 
form of πi(p) is the beta distribution with parameters α0i 
and β0i (Congdon, 2001). 

Information for developing the prior density 
πi(p|α0i, β0i) can be highly specific to the history of running 
equipment represented by ai. If this history produced some 
data on failures of ai, techniques for developing the so-
called non-informative priors can be applied (Siu, Kelly, 
1998). However, πi(p|α0i, β0i) can be informative prior, that 
is, reflect solely the engineer’s belief concerning pfki. In the 
present example, the same prior distribution will be used 
for all three ais, namely, the beta distribution with α0i = 2 
and β0i = 10 (Figure 3). 

The prior will be updated using alternative-specific 
evidence Ei given in Table 1 and consisting of the recorded 
values of the numbers of demands and failures: 

 Ei = {r i failures in ndi demands} (13) 

These sets of evidence will yield three different posterior 
distributions πi(p | Ei) ≡ πi(p | α1i, β1i) which can be used as 
input information for MAS. 
For the evidence (13), the likelihood function L(Ei | p) is 
expressed by the Eq. (12). If the beta distribution with the 
parameters α0i and β0i is used as a prior of pfki, the posterior 

Three alternative equipments with different histories of demands and failures 

Alternative 
ai 

Recorded evidence 
Ei = {r i failures in ndi demands} 

Parameters of posterior 
distribution πi(p | Ei) 

 ndi r i α1i β1i 

95th percentile 
of πi(p | Ei) 

Mode of 
πi(p | Ei) 

a1 4 0 2 14 0,279 0,0714 
a2 5 0 2 15 0,264 0,0667 
a3 7 1 3 16 0,310 0,125 
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distribution will also be a beta distribution with the 
parameters calculated by the following formulas 
(Congdon, 2001: 29): 



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−+=
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1

idii
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rn

r

0

0

ββ
αα
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The three sets of evidence Ei yield three posterior beta 
distributions πi(p | Ei) with densities shown in Figure 4. 
These distributions are different for all three alternatives ai 
and so they can be used as uncertain attributes of MAS. 

 

 

Conclusions 

Problem of a managerial decision concerning the 
choice of equipment used for a prevention of industrial 
accidents has been considered. The choice was formulated 
as a selection among alternative arrangements/types of 
protective equipment. The choice was implemented by 
applying mathematical methods of multi-attribute selection 
(multi-criteria decision-making). The emphasis was on 
specifying reliability-oriented part of input information for 
the multi-attribute selection. 

The main idea of the paper was that the multi-attribute 
selection should include attributes which account for the 
possibility of failure of the protective equipment. A failure 
probability is the main example of such safety-related 
attributes. They can be uncertain in the epistemic sense. 
The epistemic uncertainty in the safety-related attributes 
was quantified by applying Bayesian analysis. This 
analysis yields prior or posterior probability distributions 
which can be used as input information for the multi-
attribute selection. 

A development of appropriate prior distributions for 
the alternatives under comparison can be the most 
resource-intensive part of specifying the input information 
for a multi-attribute selection problem. The development 
and updating of the prior distribution will require a delicate 
handling of available historic data on equipment failures 
and extensive use of expert judgements. However, after 
this information is received, the prior can be updated and 
selection problem solved almost automatically by applying 
rules of Bayesian reasoning and formal methods multi-
attribute selection. 

The decision-making which, among other things, takes 
into account uncertain failure probabilities is far from the 
current managerial practice. However, failures of the 
equipment to perform its protective function may lead to 
major accidents. The potentiality of such accidents will 
require to abandon the intuitive assessment of the 
reliability of protective equipment. The decision-making 
based on formal measures characterising the fail-safe 
behaviour can be the proper step towards managing risks 
of hazardous industrial facilities. 
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Figure 3. Prior density πi(p| 2, 10) for all alternatives 
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Edmundas Kazimieras Zavadskas, Egidijus Rytas Vaidogas 

Baj÷so požiūris į vadybinius sprendimus pasirenkant saugos įrangą 
technologin÷ms avarijoms išvengti 

Santrauka 

Straipsnyje nagrin÷jama problema, kaip pasirinkti technologinę 
saugą užtikrinančią įrangą (saugos įrangą) iš kelių alternatyvių įrangos 
variantų. Pagrindinis akstinas taip pasirinkti yra saugos įrangos gedimai. 
Jie atsiranda kartkart÷mis ir gali sukelti sunkų technologinių avarijų 
eskalavimą. Pasirinkimo problema formuluojama matematiniu 
daugiakriterin÷s atrankos uždaviniu. Šis uždavinys matematiškai išreiškia 
vadybinę sprendimo pri÷mimo problemą. Straipsnio tikslas - susieti 
saugos įrangos patikimumo (gedimo tikimyb÷s) vertinimą su 
daugiakriterine atranka. 

Alternatyvių saugos įrangos variantų gedimo tikimyb÷ yra laikoma 
atrankos kriterijumi (atributu). Nagrin÷jama, kaip vertinti šią tikimybę 
pasitelkiant Baj÷so statistin÷s teorijos priemones. Apriorinis ir 
aposteriorinis Baj÷so skirstiniai laikomi gedimo tikimyb÷s įverčiais. 
Detaliai aptariamas šių skirstinių parinkimas. Tariama, kad saugos įrangą 
sudaro techniniai komponentai, kurie normaliomis sąlygomis yra laukimo 
būsenos ir turi veikti kilus pareikalavimui (pl÷tojantis technogeninei 
avarijai). Toks įrangos darbo pobūdis yra aprašomas binominiu 
tikimybiniu skirstiniu. Pagrindžiant jo taikymą teigiama, kad saugos 
įrangos sen÷jimo procesas n÷ra intensyvus ir bent preliminariai jį galima 
ignoruoti. Binominio skirstinio parametras – gedimo pareikalavus 
tikimyb÷ – laikomas epistemine prasme neapibr÷žtu dydžiu. Nagrin÷jama, 
kaip šį neapibr÷žtumą kiekybiškai išreikšti aprioriniu skirstiniu. Rodoma, 
kaip atnaujinti tą skirstinį taikant Baj÷so teoremą ir taip gauti 
aposteriorinį skirstinį. Apriorinis ir aposteriorinis skirstiniai yra 
įtraukiami į atrankos problemą juos laikant neapibr÷žtais atributais. Šie 
skirstiniai kiekybiškai išreiškia episteminį neapibr÷žtumą, kuris gali būti 
sumažintas gaunant naujos informacijos apie įrangos gedimus. 

Straipsnyje taikomas neapibr÷žtumų modeliavimas atitinka rizikos 
analiz÷s metodologiją, kuri vadinama klasikiniu Baj÷so požiūriu į rizikos 
vertinimą. Jo esm÷ yra ta, kad gedimo tikimyb÷s yra laikomos fizin÷mis 
saugos įrangos charakteristikomis, kurių tikslios reikšm÷s nebūna 
žinomos. Jas vertinti būna sunku, nes įrangos gedimai yra reti ir šias 
tikimybes išreikšti santykiniu gedimo dažniu yra problemiška. Duomenų 
apie gedimus paprastai būna surinkta mažai ir pasikliautinieji intervalai, 
skaičiuojami klasikin÷s statistikos metodais, būna nepriimtinai platūs. 
Tod÷l straipsnyje gedimo tikimybes siūloma nusakyti ne intervalais, o 
tikimybiniais skirstiniais. Atliekant daugiakriterinę atranką, šie skirstiniai 
yra parenkami kiekvienam alternatyviam saugos įrangos variantui. 

Straipsnyje rodoma, kad neapibr÷žtas gedimo tikimybes galima 
naudoti skaičiuojant kiekvieno saugos įrangos varianto rizikos profilį. Šis 
rizikos matas įtraukiamas į daugiakriterin÷s atrankos uždavinį. Tai 
atliekama nustatant avarijos, kurią tur÷tų užkirsti saugos įranga, pasekmes 
ir apskaičiuojant tų pasekmių sunkumo matus. Taip gaunama vidutin÷ 
kiekvieno varianto rizika, kuri yra laikoma vienu iš lyginamų variantų 
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atributų. Siūloma tiek gedimo tikimybę, tiek vidutinę riziką naudoti kartu 
su įprastiniais atrankos atributais: kaina, priežiūros išlaidomis, 
technin÷mis charakteristikomis (pvz., našumu). 

Tiek saugos įrangos gedimo tikimyb÷s, tiek alternatyvių įrangos 
variantų rizikos profilio elementai laikomi epistemine prasme 
neapibr÷žtais dydžiais. Rodoma, kad jų neapibr÷žtumas gali būti 
sumažintas pasitelkiant Baj÷so atnaujinimo procedūrą. Atnaujinimą 
galima atlikti gavus naujų duomenų apie įrangos gedimus. Detaliai 
aptariama, kaip šie duomenys turi būti surinkti, kad jie tiktų apriorinio 
tankio atnaujinimo procedūrai. Pateikiami trys naujų duomenų išreiškimo 
pavidalai: (a) gedimų skaičius per steb÷tą pareikalavimų skaičių; (b) 
gedimų ir pareikalavimų skaičiai, užfiksuoti eksploatuojant saugos įrangą 
įvairiomis sąlygomis, bei (c) unikali gedimų ir s÷kmingų startavimų seka, 
užfiksuota per tam tikrą pareikalavimų skaičių. 

Trumpai aptariama, kur reikia ieškoti duomenų apie saugos įrangos 
gedimus. Galimu duomenų šaltiniu yra laikomos gedimų duomenų baz÷s, 
kurias kuria ir papildo saugos įrangą gaminančios ir eksploatuojančios 
įmon÷s. Kitu duomenų šaltiniu laikomos duomenų baz÷s, kuriose 
kaupiama informacija apie analogiškos ir panašios įrangos eksploatavimo 
istoriją. Teigiama, kad dar vienas duomenų šaltinis yra duomenų baz÷s, 
kurias kaupia valstyb÷s kontrol÷s organizacijos. Šios organizacijos 
reikalauja pateikti standartizuotas ataskaitas apie gedimus ir avarijas, 
įvykstančius jų prižiūrimose įmon÷se. Tų ataskaitų informacija yra 
kaupiama duomenų baz÷se, kurios gali būti patikimas duomenų šaltinis 
vertinant saugos įrangą. Tokios baz÷s pavyzdys yra baz÷, kurioje 
kaupiami duomenys apie gaisrus ir nelaimingus atsitikimus, įvykstančius 
pramon÷s įmon÷se. 

Straipsnyje aptariami du atvejai, susiję su Baj÷so atnaujinimui 
naudojamos informacijos gavimu.  

 
 
 
 
 
 
 
 
 
 

Pirmuoju atveju daugiakriterin÷ atranka vykdoma tik vieną kartą. Ji 
grindžiama arba tik aprioriniais skirstiniais, arba aprioriniais skirstiniais ir 
nauja informacija, kurią pavyksta sukaupti iki sprendimo pri÷mimo 
momento. Antruoju atveju sprendimai apie saugos įrangos pasirinkimą 
yra priimami keletą kartų. 

Tarp gretimų sprendimų praeina tam tikri laiko tarpai. Per šiuos 
laiko tarpus gali būti gauta nauja informacija ir atliekamas Baj÷so 
atnaujinimas. Taip susiformuoja iteratyvus procesas, kuriame 
aposteriorinis skirstinys, naudotas paskutiniojo pasirinkimo procese, yra 
naudingas kaip apriorinis einamojo pasirinkimo procese. Toks 
pasikartojantis saugos įrangos pasirinkimas gali būti atliekamas statant vis 
naujas įmones, kuriose yra taikoma ta pati pavojinga gamybos 
technologija. 

Daigiakriterin÷s atrankos uždavinį su neapibr÷žtais atributais 
siūloma spręsti episteminio neapibr÷žtumo propagavimo būdu. Jį reikia 
atlikti taikant Monte Karlo modeliavimą. Atliekant tokį propagavimą, 
episteminio neapibr÷žtumo matai, susiję su pavieniais atributais, yra 
transformuojami į diskretųjį episteminį skirstinį. Jo tikimybiniai svoriai 
išreiškia pavienių atrankos variantų šansą būti išrinktais geriausiuoju 
variantu. Atrankos rezultatas bus variantas su didžiausiu tikimybiniu-
episteminiu svoriu. Toks atrankos kriterijus atspindi pasirinkimo pagal 
didžiausią s÷kmes tikimybę principą. 

Galima siūlomo metodo taikymo sritis yra technologin÷s rizikos 
valdymas. Jo prireiks eksploatuojant tiek pramoninius objektus, tiek ir 
gyvenamuosius namus, įstaigų pastatus, viešųjų renginių vietas. Siūlomas 
metodas pad÷s atsižvelgti į saugos įrangos patikimumą, o ne tik į kainą ir 
eksploatacines charakteristikas. Kartu siūlomas metodas leis racionaliai 
išnaudoti ribotus ir dažnai brangius statistinius duomenis apie saugos 
įrangos gedimus. Baj÷so atnaujinimo procedūra tam gerai tinka. 

 
Raktažodžiai: Baj÷so požiūris, technologin÷ avarija, saugos įranga, 

gedimas, daugiakriterin÷ atranka. 
 

The article has been reviewed. 
Received in November, 2008; accepted in December, 2008. 

 
 

 

 


