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Nowadays everyone likes a nation or a company until
it tries to reduce energy losses in heating. This paper
proposes the project to study energy losses in heating a
building. Investigations and heating losses calculations
were made and methods selected to optimize the results.
These methods concern MOORA (Multi-Objective
Optimization by Ratio analysis) and MULTIMOORA
(MOORA plus Full Multiplicative Form). Starting with a
matrix of alternative responses on the objectives, three
approaches come to an unambiguous result.
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Introduction

Heating energy consumption in a building depends on
climate, energy resources acquisition price, environmental
requirements and  construction design traditions.
Investigations and calculations about heating energy losses
in a building presented the results with different
significance values and dimensions. To select an optimal
alternative having different objectives and attributes with
difference values and dimensions the multi-objective
optimization  methods: MOORA  (Multi-Objective
Optimization by Ratio analysis) and MULTIMOORA
(MOORA plus Full Multiplicative Form) were used.

Using multi-objective optimization methods all usable
objectives must be measurable, even if the measurement is
performed only at the nominal scale (present/absent;
yes/no) and their outcomes must be measured for every
decision alternative. Objective outcomes provide the basis
for a comparison of the alternatives and consequently
facilitate the selection. Therefore, multi-objective
techniques seem to be an appropriate tool for ranking or
selecting one or more alternatives from a set of the
available options based on multiple, sometimes conflicting,
objectives. A large number of methods have been
developed for solving multi-objective problems (Kaplinski
and Tamosaitiene 2010; Peldschus ef al. 2010; Peldschus
2008; Zavadskas et al. 2010; Jakimavicius and Burinskiene
2009a, b; Hui et al. 2009; Liaudanskiene et al. 2009; Liu
2009; Plebankiewicz. 2009; Ulubeyli and Kazaz. 2009;
Turskis et al. 2009; Selih et al. 2008; Zavadskas and
Vaidogas 2008). Multi-objective optimization frameworks
vary from simple approaches, requiring very little
information, to the methods based on mathematical

programming techniques, requiring extensive information
on each objective and the preferences of stakeholders.
Multi-objective  optimization by ratio analysis
(MOORA) composed of two methods: ratio analysis and
reference point theory, starting from the previous found
ratios responds to the seven conditions from Brauers and
Zavadskas in 2010. If MOORA is joined with a full
multiplicative form for multiple objectives, a total of three
methods are joined under the name of MULTIMOORA. In
addition, if MULTIMOORA is associated with the
Ameliorated Nominal Group Technique and with Delphi,
the most robust approach exists for multi-objective
optimization up to now (Brauers and Zavadskas. 2010).

MOORA method

MOORA was launched by Brauers and Zavadskas for
the first time in 2006. The method starts with a matrix of
responses of different alternatives on different objectives:
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where: x; - the response of alternative j on objective or
attribute i; i= 1, 2,... , n - is the number of objectives; j=
1, 2,..., m - is the number of alternatives.

With internal normalization, MOORA method does
not use weights of objective or attribute (i). The MOORA
method consists of two components: the ratio system and
the reference point approach (Brauers and Zavadskas 2009).

The ratio System part of MOORA

In the ratio system, initial data of an alternative on an
objective are internally normalized. Each response of an
alternative on an objective is compared to a denominator
which is a representative for all alternatives concerning
that objective. The denominator consists of the square root
of the sum of squares of each alternative per objective
(Van Delft and Nijkamp 1977).
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with: x;; - response of alternative j on objective i; j = 1, 2,
..., m; m the number of alternatives; i = 1, 2, ..., n; n - is
the number of objectives; X, - a dimensionless number

representing the normalized response of alternative j on
objective i.

The ratio system gets dimensionless numbers and in
this way has no specific unit of measurement. The
normalized response of the alternatives on the objectives
belongs to the interval [0; 1]. However, sometimes the
interval could be [-1; 1] indeed, for instance, in the case of
productivity the growth of some sector, regions or
countries may show decrease instead of increase in
productivity i.e. a negative dimensionless number (Brauers
et al. 2008).

For optimization, these responses are added in the case
of maximization and subtracted in case of minimization:

= _ i=g— i=n =
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where: i=1, 2, ..., g as the objectives to be maximized; i=
g+ 1, g+ 2 .. nasthe objectives to be minimized, y, as

the normalized assessment of alternative j with respect to
all objectives.
An ordinal ranking of y; shows the final preference.

The reference point part of MOORA

Reference point theory is based on the ratios found in
formula (2) whereby a maximal objective reference point
is also deduced. The maximal objective reference point
approach is called as realistic and non-subjective when the
coordinates (7;) selected for the reference point are realized
in one of the candidate alternatives.

Given the dimensionless number representing the
normalized response of alternative j on objective i, i.e. X;

in formula (2), we come to the matrix:
- %) )

where: i = I, 2, ..., n as the attributes; j = /, 2, ..., m as the
alternatives; r; - the i* coordinate of the reference point;
fi/. - the normalized attribute i of alternative j;

This matrix is subject to the min- max metric of
Tchebycheff (Karlin & Studden, 1966):
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with: ‘rl. - xl.j‘ the absolute value if X; is larger than 7; for

instance by minimization. The min-max metric is the best
choice between all the possible metrics of reference point
theory (Brauers & Zavadskas 2006).

The Full Multiplicative Form for Multi-Objectives

Besides additive utilities, a utility function may also
include a multiplication of the attributes. The two

dimensional u(y,z) can then be expressed as a multi-linear
utility function (Keeney and Raiffa 1993):

u(y,2)= kit () kcttz(2)+ ko, (y)u=(z). (©)
If k=0, we return to the additive form. For Keeney

the additive form is rather a limiting case of the
multiplicative utility function (Keeney and Raiffa 1993).
If kyz =0, then the utility function possess a

multiplicative part:
If k. >0, then mutual influence is positive,

If kyz <0, then the mutual influence has a negative

effect on the utility function.

This representation mixes additive and multiplicative
parts. It is not related to a multiplicative utility function nor
to a product form, but to a bilinear representation of the
form: Z,Zyam X,y Indeed this representation is bilinear

and not purely multiplicative: “since two sets of variables
are involved and each appears in a linear way... and
constant coefficients can be added to make the forms
completely general” (Allen 1957).

The danger exists that the multiplicative part becomes
explosive. The multiplicative part of the equation would
then dominate over the additive part and finally would bias
the results. It could happen if the factors are larger than 1,
unless the weights for the multiplicative part are extremely
low.

The Multiplicative form for multi-objectives was
introduced by Miller and Star in 1969. It is nonlinear, non-
additive and does not use weights.

The following n- power form for multi-objectives
since now is called Miller and Star full- multiplicative
form in order to distinguish it from the mixed forms:

Uj:]:[xl.j, (7

where: j = 1, 2, ...,m; m the number of alternatives; i = /,
2, ...,n; n the number of objectives; X, - the response of

alternative j on objective i; U; — the overall utility of
alternative ;.

The overall utilities (U;), obtained by multiplication of
difference units of measurement, become dimensionless.

Stressing the importance of an objective can be done
by adding an a - term or by allocating an exponent (a
Significance Coefficient) on condition that this is done
with unanimity or at least with a strong convergence in
opinion of all the stakeholders concerned.

How is it possible to combine a minimization problem
with the maximization of other objectives? Therefore, the
objectives to be minimized are denominators in the
formula:

A.
U, =—, ®)
p Bj
With: Aj:]jxgia j =1, 2... m; m the number of

g=1
alternatives; i - the number of objectives to be maximized,
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n
With: B, = H Xy 1 - the number of objectives to
k=i+1
be minimized;
With: U ; : the utility of alternative j with objectives to

be maximized and objectives to be minimized. Following
mathematical logic in the Full Multiplicative Form
multiplication and division are harmoniously linked to
each other, like addition and subtraction in the ratio system
(see formula 3).

MULTIMOORA

MULTIMOORA is the further sequence of the
MOORA method and of the full multiplicative form of
multiple-objectives. MULTIMOORA was introduced by
Brauers and Zavadskas for the first time at the beginning
of 2010. MULTIMOORA becomes the most robust system
of multiple optimizations under condition of support from
the ameliorated nominal group technique and Delphi
(Brauers and Zavadskas 2010).

Selection of the effective building windows and
external walls design alternatives using multi-
objective decision-making methods

The main building purpose is to create good living
conditions, which means better life quality. One of the
most qualitative aspects of living in a building is having it
warm. In order to have it warm, the basic building design
must comply with certain requirements (Juodis et al. 2009;

Pasanisi & Ojalvo 2008). Basic building design such as
external walls, roof, ground level floor and windows have
a special role in the building construction. These elements
can involve the construction of heating and cooling
systems for different seasons. Their design requires much
special scientific knowledge (Wang et al. 2009; Sobotka &
Rolak 2009; Jurelionis and Isevicius 2008; Chen et al.
2008). Nearly half of all heating losses in a building is
caused by external walls and windows (Pupeikis et al.
2010; Zukowski & Gajda 2009; Ekici and Aksoy 2008;
Zavadskas et al. 2008; Ginevicius et al. 2008). Therefore,
it is very important to select and adapt external walls and
windows in a building. However external walls and
window selections do not guarantee the reduction of the
total building heat losses reduction. There are more other
elements which affect heat losses (Samarin et al. 2007,
2009; Seduikyte & Paukstys 2008). Only comprehensive
assessment of the responsible elements can greatly reduce
heat loss, particularly in buildings refurbishments
(Mickaityte et al. 2008; Martinaitis e al. 2007).

The aim of this investigation is to create a technique
for the choice and selection of external walls and windows
for a building by the use of multi-objective decision-
making methods like MOORA and MULTIMOORA.

Alternatives for external walls and windows are being
formed by using various windows measurements but with
the same heat transfer coefficient. Heating energy losses
and inflows were calculated using formulas from technical
construction regulation (STR.2.05.01:2005).

A case study considers six possible alternatives of
external walls and windows ratio in Table 1.

Table 1

External walls and windows quantity (mz) in the building according to the point of compass

Alternatives (m?)

A A, As Ay
walls windows walls windows walls windows walls windows
South 119.36 31.35 149.51 1.20 144.11 6.60 106.31 44.40
West 54.88 6.72 58.60 3.00 57.88 3.72 50.63 10.97
North 82.01 6.00 86.21 1.80 83.21 4.80 74.76 13.25
East 52.40 10.68 59.48 3.60 56.66 6.42 45.15 17.93
Total: 308.65 54.75 353.80 9.60 341.86 21.54 276.85 86.55
Alternatives (mz)
As As
walls windows walls windows
South 136.46 14.25 145.31 5.40
West 54.88 6.72 55.60 6.00
North 82.01 6.00 83.81 4.20
East 56.00 7.08 59.00 4.08
Total: 329.35 34.05 343.72 19.68

Each alternative provided in table 2, is described by

seven objectives:

1) Heat losses through the building external walls- X;
[kWh/m?**year];

2) Heat losses through the building windows- X, [kWh/m?
per year];

3) Heat losses through the bearer thermal bridges- Xs
[kWh/m” per year];

4) Heat losses through above the rated air infiltration- X4
[kWh/m? per year];

5) External heat inflows in the building- X5 [KkWh/m® per
yearl;

6) Total heat consumption — Xg [KkWh/m? per year];
7) External walls and windows price ratio- X; [10° LTL].
Objectives witch define heat losses in a building are
minimizes, heat inflows and price ratio in a building are
maximize. Whereas the relative window square meter is
more expensive than the wall square meters, the cost is
maximized, to reduce the cost of building construction.
Final evaluations are shown in tables, accordingly:
table 2c represents the results of the ratio system, table 2e
represents the results of reference point, and table 3
represents the results of the MULTIMOORA method.
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Table 2
The ratio system (2a until 2¢) and the reference point (2d until 2e) approach as a part of MOORA
2a. Matrix of responses of alternatives on objectives: (x;)
X; X2 X3 Xy Xs Xs X7
min min min min max Min max
A, 33.95 23.78 11.45 39.97 29.44 167.1 3.852
A; 38.9 4.17 6.32 0.01 4.29 132.52 25.184
A; 37.59 9.36 8.23 4.35 10.22 136.71 10.845
Ay 30.44 37.59 13.91 74.08 45.1 198.34 2.186
As 36.21 14.79 9.17 17.77 17.06 148.3 6.610
As 37.8 8.55 7.97 2.35 9.25 134.83 11.935
2b. Sum of squares and their square roots
X; X2 X3 Xy Xs Xs X7
A, 1152.603 565.488 131.103 1597.601 866.714 27922.410 14.840
A; 1513.210 17.389 39.942 0.0001 18.404 17561.550 634.218
A; 1413.008 87.610 67.733 18.923 104.448 18689.624 117.617
Ay 926.594 1413.008 193.488 5487.846 2034.010 39338.756 4.778
As 1311.164 218.744 84.089 315.773 291.044 21992.890 43.686
As 1428.840 73.103 63.521 5.523 85.563 18179.129 142.438
Sum of squares. 7745.418 2375.342 579.876 7425.665 3400.182 143684.36 957.576
Square roots 88.008 48.737 24.081 86.172 58.311 379.057 30.945
2c. Objectives divided by their square roots and MOORA
X; Xz X3 Xy Xs Xs X7 total rank
A, 0.3858 0.4879 0.4755 0.4638 0.5049 0.4408 0.1245 -1.6245 5
Az 0.4420 0.0856 0.2625 0.0001 0.0736 0.3496 0.8138 -0.2522 1
A; 0.4271 0.1920 0.3418 0.0505 0.1753 0.3607 0.3505 -0.8463 3
Ay 0.3459 0.7713 0.5776 0.8597 0.7734 0.5232 0.0706 -2.2336 6
As 0.4114 0.3035 0.3808 0.2062 0.2926 0.3912 0.2136 -1.1870 4
As 0.4295 0.1754 0.3310 0.0273 0.1586 0.3557 0.3857 -0.7746 2
2d. Reference point theory with ratios: coordinates of the reference point equal to the maximal objective values
X; X2 X3 Xy Xs Xg X7
r 0.3459 0.0856 0.2625 0.0001 0.7734 0.3496 0.8138
2e. Reference point theory: deviations from the reference point
Xy Xz X3 Xy Xs Xg X7 max Rank min
A, 0.0399 0.4024 0.2130 0.4638 0.2686 0.0912 0.6893 0.6893 4
A; 0.0961 0.0000 0.0000 0.0001 0.6999 0.0000 0.0000 0.6999 5
A; 0.0812 0.1065 0.0793 0.0505 0.5982 0.0111 0.4634 0.5982 1
Ay 0.0000 0.6857 0.3152 0.8597 0.0000 0.1736 0.7432 0.8597 6
As 0.0656 0.2179 0.1184 0.2062 0.4809 0.0416 0.6002 0.6002 2
As 0.0836 0.0899 0.0685 0.0273 0.6148 0.0061 0.4281 0.6148 3
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Table 3
The full Multiplicative Form
1 2 2.1 3 3.1 4 4.1 5 5.1
min min 2.1=1:2 min 3.1=2.1:3 min 4.1=3.1:4 max 5.1=4.1-5
A 33.95 23.78 1.42767 11.45 0.124687 39.97 0.0031195 29.44 0.091839
A, 38.9 4.17 9.328537 6.32 1.476034 0.001 1476.0344 4.29 6332.187
A; 37.59 9.36 4.016026 8.23 0.487974 4.35 0.1121779 10.22 1.146458
Ay 30.44 37.59 0.80979 13.91 0.058216 74.08 0.0007859 45.1 0.035442
As 36.21 14.79 2.448276 9.17 0.266988 17.77 0.0150246 17.06 0.25632
As 37.8 8.55 4.421053 7.97 0.554712 2.35 0.2360476 9.25 2.18344
6 6.1 7 7.1 8 9
min 6.1=5.1:6 max 7.1=6.1-7 Result Project
167.1 0.00055 3.852 0.002117 5 A,
132.52 47.78288 25.184 1203.364 1 A,
136.71 0.008386 10.845 0.090947 3 A;
198.34 0.000179 2.186 0.000391 6 A,
148.3 0.001728 6.610 0.011425 4 As
134.83 0.016194 11.935 0.193276 2 Ag

Calculation results

MOORA and MULTIMOORA optimization technique
with discrete alternatives was used for ranking alternatives
in the case study. Three results were totally

got: MOORA ratio system, MOORA reference point and
MULTIMOORA. Final calculation results are shown in
Table 4.

Table 4

MULTIMOORA as a consequence of the MOORA method and of the Full Multiplicative Form

MOORA Ratio system MOORA Reference point Full Multiplicative Form  MULTIMOORA
Tchebycheff
A, 5 4 5 5
A, 1 5 1 1
A; 3 1 3 3
Ay 6 6 6 6
As 4 2 4 4
As 2 3 2 2
Conclusions

The ratio system calculation results concerned best
scores A4,, Ag, and A;. The reference point calculation results
concerned best scores A4;, As;, and As, MULTIMOORA
calculation results concerned best scores 4,, A, and 4. The
ultimate preference using the thirst MOORA component, the
ratio system, and MULTIMOORA is well pronounced and
is variant 4,. (Building external walls total area is 353.80
m?; building windows total area is 9.60 m?®). The study
proposes second best scores under the form of either variant
Ay (Building external wall total area: 343.72 m? building
windows total area: 19.68 m?) or 4; (Building external wall
total area: 341.86 m’, building windows total area: 21.54
m?). Value deviations of 4;, 4, and A; are considered too big
for the decision makers these alternatives have been
rejected.

For Multi-Objective Optimization MULTIMOORA is
a Synthesis of three Approaches: ratio system, reference point
method based on the obtained ratios and the full
multiplicative method. The methods bring cardinal utilities
implying a final ordinal preference.

The case study using Multi-Objective Optimization
methods concerned an effective selection between six
walls and windows ratios for a building

Applying above mentioned methods proved that the
best alternative was external wall total area is 353.80 m’
and windows total area 9.60 m’. The worst solution is
constructing dwelling house with windows measurements
(total area: 86.55 m?).

It can be concluded that multi-objective analysis in
construction is necessary. The selection of the best
alternative cannot be based on a single objective. The case
study using MOORA and MULTIMOORA methods proved
that the proposed theoretical model was effective in a real
life situation and could be successfully applied to solving
similar utility problems and not only in construction.
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Modestas Kracka, Willem Karel M. Brauers, Edmundas Kazimieras Zavadskas
Pastato Silumos nuostoliy skai¢iavimas taikant daugiakriterf MULTIMOORA metoda
Santrauka

Sildymo energijos vartojimas pastate priklauso nuo klimato salygu, energijos istekliy ir ju galimybiy jsigijimo kainos, aplinkosaugos reikalavimy ir
statybos projektavimo tradicijy. Kriterijai: lauko klimato salygos, energijos iStekliy kaina ar aplinkosaugos reikalavimai, negali daryti jtakos greitos ar
apskritai jtakos. Taciau statybos projektavimo kriterijus gali daryti jtaka projektuojant, net nekeiCiant statybos techniniy reikalavimy ar direktyvy.
Atliekant $iluminés energijos nuostoliy tyrin¢jimus ir skai¢iavimus pastate, buvo gauti skirtingy reik§miy ir matavimo vienety rezultatai. ISrinkti optimaly
rezultatq turint skirtingus rodiklius ir septynis skirtingus kriterijus, pakankamai sunku. Taigi tolesniam skai¢iavimui pasirinkti daugiakriteriai sprendimo
priémimo metodai MOORA ir MULTIMOORA.

Daugiatikslis sprendimo priémimas yra apibréziamas kaip procesas, leidziantis pagal tam tikra taisykle isdéstyti galimy sprendimy aibés elementus {
eilg, tai yra pagal tam tikra optimalumo principa iSdéstyti aibés elementus. Daugiakriteriai metodai klasifikuojami pagal pirmy raidziy inicialus arba
pagal sprendimo priémimo skaiciy.

Daugiakriteriuose sprendimy priémimo metoduose visi naudojami Kriterijai turi matavimo vienetus, net jei kriterijus apibréziamas nominalia
matavimo vieneto skale (taip ne; esantis nesantis) ir rezultatai turi biiti matuojami kiekvieno rodiklio sprendimu. Daugiakriterinés sprendimy paramos
sistemos nagrinéja problemas, kuriy sprendimy erdvé yra diskreti. Ja sudaro aibé galimy alternatyvy (rodikliy).

Pagrindiniai daugiakriterio sprendimo priémimo sistemos etapai:

Kriterijy parinkimas ir jvertinimas;

Alternatyvy sistemos sukiirimas uzsibréztiems tikslams pasiekti;

Rodikliy normalizavimas;

Daugiakriterio metodo pritaikymas sprendimo priémimo sistemai jvertinti;

Gauty rezultaty jvertinimas ir optimalaus varianto priémimas;

Jei galutinis sprendimas néra priimamas, renkama nauja informacija sprendimo priémimo sistemai jvertinti.

Tyrimo uzdavinys. Parinkti optimaly iSoriniy sieny ir langy kiekj pastate, taikant daugiakriterius sprendimy priémimo metodus MOORA ir
MILTIMOORA, gautus rezultatus palyginti.

Tyrimo naujumas. Teoriniy metody pritaikymas realiems pastaty projektavimo atvejams statybose. Pasitilytas naujas buidas, parenkant iSoriniy sieny
ir langy kiekius pastate.

Tyrimo objektas. Minimaliai sumazinti §ilumos nuostolius pastate parenkant iSoriniy sieny ir langy kiekius, atsizvelgiant { pasaulio Salis.

Sio tyrimo tikslas. Pasiiilyti optimaly iSoriniy sieny ir langy santykio parinkima, kai turimi skirtingi &ilumos nuostoliy kriterijai.

Tyrimo metodas. Analitinis tyrimas, gristas tiriamuoju uzdaviniu.

Tyrimo pavyzdys. Pavyzdyje pateikiama sudaryta uzdavinio sprendimo priémimo matrica. Atsizvelgiant { $ilumos nuostolius pastate, priklausomai
nuo langy ir iSoriniy sieny santykio, buvo pateiktos Sesios skirtingos alternatyvos. 4, (sieny 308,65 n’, langy 54,75 m?), 4, (sienu 353,80 m”, langy 9.60
m?), A; (sieny 341,86 m?, langu 21,54 m?), 4, (sieny 276,85 m?, langy 86,55 m?), 45 (sieny 329,35 m?, langy 34,05 m?), A, (sieny 343,72 m?, langy 19,68
m?). I§ pateikty $ediy alternatyvy reikia iSrinkti geriausia.

Alternatyvoms apraSyti buvo parinkti septyni reik§mingi kriterijai, kurie daro jtaka Silumos nuostoliams pastate, keiciant langy ir sienos santyki:
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x;— $ilumos nuostoliai per pastato iSorines sienas;
X,— Silumos nuostoliai per langus;

X5— Silumos nuostoliai per Siluminius tiltelius;

X4— $ilumos nuostoliai dél iSorinés oro infiltracijos;

xs— Silumos pritekéjimas | pastata i$ iSorés;

X¢— pastato suminés energijos sanaudos;

X7— ioriniy sieny ir langy kainos santykis.

ISvados. Atliekant tyrima, taikant daugiakriterius metodus, buvo apskaiCiuotas ir iSrinktas optimalus variantas i§ pateikty SeSiy langy ir iSoriniy
sieny skirtingy dydziy varianty. MOORA ir MULTIMOORA metoduose rodikliai yra nedimensiniai dydziai, kurie neturi svorio, todél skai¢iavimo eiga
ir rezultatas pateikiami greiiau. Galima teigti, kad statyboje naudojama daugiakriteré analizé padeda iSspresti problemas greifiau ir naudingiau.
Geriausios alternatyvos iSrinkimas negali buti grindziamas vienu kriterijumi. Minéti metodai leidzia kriteriju skaiCiy iSplésti iki begalybés. Tyrimo
atvejis, taikant MOORA ir MULTIMOORA metodus, parodé, kad siilomas teorinis modelis buvo veiksmingas realiame gyvenime ir galéty bti
sékmingai taikomas sprendziant panasias problemas ir ne statybos srityje.

Raktazodziai: langai, sienos, kriterijai, alternatyvos, MOORA metodas, MULTIMOORA metodas.
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