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With the rapid growth of available online cloud services and providers for customers, the selection of cloud service providers 

plays a crucial role in on-demand service selection on a subscription basis. Selecting a suitable cloud service provider 

requires a careful analysis and a reasonable ranking method. In this study, an improved combined compromise solution 

(CoCoSo) method is proposed to identify the ranking of cloud service providers. Based on the original CoCoSo method, we 

analyze the defects of the final aggregation operator in the original CoCoSo method which ignores the equal importance of 

the three subordinate compromise scores, and employ the operator of “Linear Sum Normalization” to normalize the three 

subordinate compromise scores so as to make the results reasonable. In addition, we introduce a maximum variance 

optimization model which can increase the discrimination degree of evaluation results and avoid inconsistent ordering. A 

numerical example of the trust evaluation of cloud service providers is given to demonstrate the applicability of the proposed 

method. Furthermore, we perform sensitivity analysis and comparative analysis to justify the accuracy of the decision 

outcomes derived by the proposed method. Besides, the results of discrimination test also indicate that the proposed method 

is more effective than the original CoCoSo method in identifying the subtle differences among alternatives.  
 

Keywords: Multi-Criteria Decision Making; Cloud Service Provider Selection; Combined Compromise Solution (Cocoso); 

Maximum Variance; Discrimination Degree. 

 
Introduction 

 
Cloud computing is an emerging technology for 

providing software, platform and infrastructural resources on 

demand over the Internet, enabling consumers to avoid initial 

expenses, reduce operating costs, and enhance responses by 

acquiring the services and infrastructural resources 

instantaneously in an elastic manner, so that consumers can 

focus more time on innovation and the creation of business 

value. With the rapid development of cloud computing, cloud 

service providers (CSPs) such as Amazon, Google, Microsoft 

have launched a wide variety of cloud services, which allows 

consumers to handle large datasets running on remote servers 

(i.e., cloud) without installing and executing on local 

computers anymore (Varghese & Buyya, 2018). However, 

with the rapid growth of available online cloud services and 

providers, it becomes a challenge for consumers to choose the 

best service provider based on their operational requirements, 

financial constraints and long-term performance (Al-Faifi et 

al., 2019; Alshehri, 2019; Buyukozkan et al., 2018).  

Selecting a suitable CSP requires a careful analysis and a 

reasonable ranking method. It can be viewed as a multi-

criteria decision-making (MCDM) problem since it involves 

the intrinsic relationships among the quality of service (QoS) 

criteria. The studies on the CSP selection based on MCDM 

have gained huge momentum in recent years (Alabool et al., 

2018). For example, the SAW (Simple Additive Weighting) 

was widely adopted for cloud service selection (Zhao et al., 

2012; Qu et al., 2013). However, the SAW is a simple 

weighting approach that was generally used to solve single 

dimensional decision problems requiring low decision 

accuracy. Garg et al. (2013) proposed a cloud service quality 
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ranking method based on the AHP (Analytic Hierarchy 

Process). Choi and Jeong (2014) gave a quality evaluation 

method for cloud computing service selection based on the 

ANP (Analytic Network Process). Nawaz et al. (2018) 

applied the BWM (Best-Worst Method) for cloud service 

selection. Sidu and Singh (2019) proposed a PROMETHEE 

(Preference Ranking Organization Method for Enrichment 

Evaluations)-based method for the selection of trustworthy 

cloud database servers. Abourezq and Idrissi (2014) applied 

the ELECTRE (Elimination etchoix traduisant la realite)-

based method to determine which cloud service meets the 

best users' requirements. Costa et al. (2013) proposed an 

MCDM method for evaluating cloud services based on the 

MACBETH (Measuring Attractiveness by a Categorical 

Based Evaluation Technique). However, these methods 

involve pairwise comparisons, which are complex and time-

consuming, and are not suitable for the situation with large 

number of criteria and alternatives. 

For solving the MCDM problem of cloud service 

selection, it is needed to deal with the compromise of QoS 

values of cloud services with respect to different or even 

conflicting evaluation criteria. In many cases, the decision-

making process can be aided by a comprehensive analysis 

from the perspective of the basic properties of non-inferior or 

compromise solutions (Yu, 1973). At present, MCDM 

methods of cloud service selection have been researched to 

find a compromise solution. For example, the TOPSIS 

(Technique for Order Preference by Similarity to Ideal 

Solution) was suggested by Singh and Sidhu (2017) to 

determine the trustworthiness degrees of cloud service 

providers based on a compromise solution. Serrai et al. (2016) 

exploited the VIKOR (VIseKriterijumska Optimizacija I 

Kompromisno Resenje), which determines a compromise 

solution with a maximum group utility value and a minimum 

‘individual’ regret value to rank the obtained skyline web 

services. Buyukozkan et al. (2018) proposed an integrated 

framework based on the AHP, VIKOR, MULTIMOORA 

(Multi-Objective Optimization on the basis of a Ratio 

Analysis plus the full MULTIplicative form) and COPRAS 

(Complex Proportional Assessment) to select the most 

desirable cloud computing technology provider, which 

deduces a compromise solution with the maximum value of 

the sum of maximum weighted normalization criteria values 

and the minimum value of the sum of minimum weighted 

normalization criteria values. However, when using these 

methods to solve MCDM problems, the ranking results 

produced by these methods may change greatly 

corresponding to the change of weight distributions of 

criteria. In other words, the reliability and stability of the 

results produced by these methods are limited (Wen et al., 

2019). To improve this limitation, the CoCoSo (Combined 

Compromise Solution) method, one of the MCDM methods, 

was proposed by Yazdani et al. (2019b). It integrates the 

SAW (Afshari et al., 2010), WASPAS (Weighted 

Aggregated Sum Product Assessment ) (Zavadskas et al., 

2012) and MEW (Multiplicative Exponential Weighting) 

methods (Zanakis et al., 1998) with aggregation strategies. 

By this method, decision-makers can obtain a multi-faceted 

compromise solution, which is consistent with the solution 

obtained by other MCDM methods, such as the VIKOR 

(Opricovic, 1998), WASPAS (Zavadskas et al., 2012) and 

MOORA (Multi-Objective Optimization on the basis of Ratio 

Analysis) (Brauers & Zavadskas, 2006) methods. Moreover, 

the optimal solution screened by the CoCoSo method is not 

easily affected by the changes of weight distribution of 

criteria or the deletion/addition of alternatives. These imply 

that the CoCoSo method is a robust method, which has 

advantages in reliability and stability of the decision-making 

results. In addition, the CoCoSo method is easy to understand 

and has wide applicability, and thus has been extended to 

different circumstances to solve decision-making problems in 

various fields (Peng et al., 2019; Yazdani et al., 2019a; Wen 

et al., 2019).  

However, to the best of our knowledge, there is no 

literature on the application of the CoCoSo method in CSP 

selection problem. Therefore, this study incorporates the 

CoCoSo method to evaluate the trustworthiness of CSPs 

based on available real sample dataset. We dedicate to 

achieving the following contributions:  

(1) We analyze the defects of the final aggregation 

operator in the original CoCoSo method which ignores the 

equal importance of the three subordinate compromise scores, 

and employ the operator of “Linear Sum Normalization” to 

normalize the three subordinate compromise scores to make 

the results reasonable; 

(2) We propose a new integration function based on a 

maximum variance optimization model to aggregate the three 

subordinate compromise scores obtained in the CoCoSo 

mehtod, so as to increase the differentiation degree of 

evaluation results and avoid inconsistent ordering;  

(3) We apply the proposed new MCDM method to select 

the optimal CSP, and then highlight the advantages of the 

proposed method by the sensitive analysis, consistency 

comparison of ranking results, and discrimination test.  

The rest of this paper is organized as follows. First, we 

introduce the preliminaries of this study. Next, we present the 

improved CoCoSo method with a maximum variance 

optimization model. Then, we present a case study that uses 

the Cloud Armor to analyze the efficiency and reliability 

based on executing the proposed method and comparing with 

other MCDM methods. Finally, a conclusion with directions 

for future work is provided. 

 
Preliminaries 

 

In this section, we briefly review the literature on the 

MCDM methods related to the CSP selection, and the 

implementation steps of the CoCoSo method and its 

extension. In addition, we summarize the common 

normalization methods. 

 
Literature Review of the CSP Selection Based on 

MCDM Methods 

In the past few years, the selection of CSPs based on 

MCDM methods has been widely concerned on the 

evaluation and identification of trustworthy CSPs. The 

MCDM methods used to select CSPs can be classified into 

four categories: single MCDM methods, fuzzy MCDM 

methods, hybrid MCDM methods, and fuzzy hybrid MCDM 

methods. Table 1 lists the related works in terms of these four 

categories. 
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 Table 1 

MCDM Method(s) used to Evaluate Cloud Service Provider 

Category MCDM method(s) Reference(s) 

Single MCDM 

AHP 
Garg et al., 2013; Ramachandran et al., 2014; 

Sun et al., 2013 

ANP Choi & Jeong, 2014; Ergu & Peng, 2014 

ELECTRE Silas et al., 2012 

MAUT (Multi-Attribute Utility Theory ) Ding et al., 2014 

MACBETH Costa et al., 2013 

PAPRIKA (Potentially All Pairwise Rankings of All Possible Alternatives) Alismaili et al., 2016  

PROMETHEE Sidhu & Singh, 2019 

SAW Zhao et al., 2012 

TOPSIS Ginting et al., 2017 

Fuzzy MCDM 

method 

Fuzzy AHP & fuzzy logic model Paunovic et al., 2018 

IIVIFS (Improved Interval-Valued Intuitionistic Fuzzy Sets) & WASPAS Gireesha et al., 2020 

IFS (Intuitionistic fuzzy set) & TOPSIS Mu et al., 2014 

TFN (Triangular fuzzy number) & AHP Low & Chen, 2012 

TFN & Fuzzy ANP Le et al., 2014 

TFN & BWM Hussain et al., 2020 

TFN & TOPSIS Basu & Ghosh, 2018 

TFN & VIKOR Alabool & Mahmood, 2013 

TrFN(Trapezoidal Fuzzy Number)) & SAW Qu et al., 2013 

TNN (Triangular Neutrosophic Numbers) & AHP Abdel-Basset et al., 2018 

Hybrid MCDM 
method 

AHP & cloud model Yang et al., 2018 

AHP & Cosine Maximization method Alshehri, 2019 

AHP & Logic Scoring Ataş & Gungor, 2014 

AHP & TOPSIS Singh & Sidhu, 2017 

ANP & DEMATEL & TOPSIS Alimardani et al., 2014 

ANP & GRA (Gray Relational Analysis) & DEMATEL (Decision Making 

Trial And Evaluation Laboratory) 
Huang et al., 2012 

ELECTRE & Block-Nested Loop Algorithm Abourezq & Idrissi, 2014 

BWM & VIKOR Serrai et al., 2016 

BWM & Markov chain method Nawaz et al., 2018 

Fuzzy hybrid 

MCDM method 

BSC (Balanced score card) & fuzzy Delphi & Fuzzy AHP Lee & Seo, 2016 

AHP and grey TOPSIS Jatoth et al., 2019 

TFN & AHP & WASPAS Alam et al., 2018 

Rough ANP and rough TOPSIS Li et al., 2018 

Fuzzy set theory & TOPSIS & Dempster-Shafer theory & Game Theory Esposito et al., 2015 

IVIF & AHP & COPRAS & MULTIMOORA & TOPSIS  Buyukozkan et al., 2018 

From Table 1, we can see that most studies have focused 

on the use of preference ordering-based methods, such as the 

AHP, ANP and BWM, PROMETHEE, ELECTRE, and 

MACBETH. But these methods involve pairwise 

comparisons, and thus are complex and time-consuming, 

especially in the situation with large number of criteria and 

alternatives. In addition, we can also find that some utility 

value-based methods such as the TOPSIS, VIKOR, 

COPRAS have been used in solving the problem of CSP 

selection from the perspective of the basic properties of non-

inferior or compromise solutions. These methods have the 

advantages of the simple calculation, easy to understand, 

and available of ranking set. But the ranking results 

produced by these methods may change due to the change 

of weight distributions of criteria. Therefore, a new CSP 

selection method should be developed as an effective 

evaluation synthesis technique to cover the shortage. Outline 

of the CoCoSo method and its extensions 

Yazdani et al. (2019b) proposed the CoCoSo method to 

deduce compromise solutions for MCDM problems by 

integrated the SAW, WASPAS and MEW methods with 

aggregation strategies. After determining the alternatives   

( 1 2, , , mA A A ) and the evaluation criteria ( 1 2, , , nC C C ), the 

steps of the CoCoSo method are given as below. 

Step 1. Form the initial decision matrix X  for m  

alternatives with respect to n  criteria: 

1 2

1 11 12 1

2 21 22 2

1 2

                            n

n

n

m m m mn

C C C

A x x x

A x x x
X

A x x x

 
 
 
 
 
 

; 1,2,i m ; 1,2, ,j n . (1) 

Step 2. Based on the idea that the desirability degrees 

of alternatives are related to the distances between 

alternatives and negative ideal solutions, we need to 

normalize the elements in the initial matrix. For “benefit” 

type criteria such as the CPU processing performance and 

the Disc storage performance in QoS criteria, the element 

ijr  in the normalized matrix m nR   are obtained by: 

min

max min

ij ij
i

ij

ij ij
ii

x x
r

x x





                         (2) 

For “cost” type criteria such as the network latency and 

the cost on demand in QoS criteria, the element ijr  in the 

normalized matrix m nR   are obtained by: 

max

max min

ij ij
i

ij

ij ij
ii

x x
r

x x





                          (3) 

Step 3. Using Eqs. (4) and (5) to obtain the sum of 

weighted comparability sequence iS   and power-weighted 

comparability sequences iP   for each alternative, 

respectively:  
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 
1

n

i j ij

j

S w r


 , for 1,2,i m                   (4) 

 
1

j
n

w

i ij

j

P r


 , for 1,2,i m                   (5) 

where jw  denotes the weight of the j th criterion and 

1
1

n

jj
w


 .   

Step 4. Based on the idea of the MULTIMOORA 

method (Brauers & Zavadskas, 2010), we can compute the 

relative priorities of alternatives by the aggregation 

strategies shown as Eqs. (6)-(8). Eq. (6) expresses the 

arithmetic mean of sums of the WSM (Weighted Sum 

Method) and WPM (Weighted Product Method) scores. Eq. 

(7) signifies a sum of relative scores of WSM and WPM 

compared to the worst cases. Eq. (8) computes a balanced 

score of WSM and WPM models. Three subordinate 

compromise scores are obtained to generate the 

performance scores of the alternatives. 

1

1
( )

i i
i m

i ii

S P
k

S P






, for 1,2,i m                (6) 

2
min min

i i
i

i i
i i

S P
k

S P
  , for 1,2,i m              (7) 

    

  
3

1

max 1 max

i i

i

i i
i i

S P
k

S P

 

 

 


 
, for 1,2,i m     (8) 

In Eq. (8), the value of   (usually =0.5  )  is 

determined by decision-makers and 0 1  . 

Step 5. The ranking of all alternatives is determined in 

descending order of the performance scores of the 

alternatives: 

   
1

3
1 2 3 1 2 3

1

3
i i i i i i ik k k k k k k  , for 1,2,i m      (9) 

The CoCoSo method is easy to understand and has wide 

applicability. It has been extended to solve decision-making 

problems in various fields. For example, Yazdani et al. 

(2019a) proposed a grey combined compromise solution 

(CoCoSo-G) method for the supplier selection in 

construction management. Peng et al. (2019) proposed a 

Pythagorean fuzzy CoCoSo method for 5G industry 

evaluation. Wen et al. (2019) proposed a hesitant fuzzy 

linguistic CoCoSo method for the selection of third-party 

logistics service providers in supply chain finance. Ecer et al. 

(2020) adopted the CoCoSo method to evaluate the 

sustainability performance of OPEC countries. Zolfani et al. 

(2019) proposed a structured framework for sustainable 

supplier selection based on the combined BWM-CoCoSo 

model. 

 
Normalization Methods 
 

Converting all performance values of alternatives under 

each criterion into non-dimensional forms is a crucial step in 

most MCDM methods. Several normalization methods have 

been developed (Jahan & Edwards, 2015). Table 2 shows 

five well-known normalization techniques (Gardziejczyk & 

Zabicki, 2017). 

 

 

 

Table 2  

Criteria Normalization Nethods 
 

Normalization method  Benefit criteria Cost criteria 

Standardization 
ij j

ij

j

x x
r




  -

ij j

ij

j

x x
r




  

Vector normalization 
2

1

ij

ij
m

iji

x
r

x





 

2

1

1
ij

ij
m

iji

x
r

x


 


 

Linear max 

normalization 

ij

ij

j

x
r

x
  1

ij

ij

j

x
r

x
   

Linear max–min 

normalization method  

ij j

ij

j j

x x
r

x x



 





 

j ij

ij

j j

x x
r

x x



 





 

Linear normalization 

sum-based method  
1

ij

ij m

iji

x
r

x





 

1

1

1

ij

ij m

iji

x
r

x





 

 

Note. The notations in Table 2 refer to ijr  : the 

normalized value of the i  th alternative on the j  th 

criterion; ijx : the value of the i th alternative on the j th 

criterion; maxj ij
i

x x   ; minj ij
i

x x   ; 
1

/
n

j ij

i

x x n


  ; 

 
2

1

n

j ij j

i

x x n


  . 

The linear normalization sum-based method is one of the 

most widely used normalization methods in classical 

MCDMs such as the AHP, SWARA and Entropy weighting 

method (Ahn, 2011). It has the following advantages 

(Lakshmi & Venkatesan, 2014): (1) it has less computation 

time and space complexity; (2) the normalized values reflect 

the relationships and differences among original evaluation 

values, simultaneously; (3) the change of original evaluation 

values has little effect on the dimensionless results. 

Therefore, we apply the linear normalization sum-based 

method in this study to transform the three subordinate 

compromise scores derived by the original CoCoSo method 

into the numbers in the interval (0,1), so as to eliminate the 

inconsistency of dimensions.  

 
The Combined Compromise Solution Method 

with Maximum Variance (MV-CoCoSo) 
 

Problem Statement 
 

In the original CoCoSo mehtod, Yazdani et al. (2019b) 

adopted the hybrid integration operator, i.e., Eq. (9), to 

synthesize the advantages of the arithmetic average 

integration operator and geometric average integration 

operator. However, this integration takes the three 

subordinate compromise scores, which have great 

differences in scores, as equally important. For the three 

subordinate aggregation operators, i.e., Eqs. (6)-(8), it is not 

difficult to find that  1 0,1ik  , 2 1ik   and  3 0,1ik  . If 

we use Eq. (9) to integrate them together, the value of 2ik  

will have a greater impact on the final result than those of 

1ik   and 3ik  , but in practice, 2ik   may be the least 

important among the three subordinate compromise scores. 

This defect of the original CoCoSo was first pointed out by 

Wen et al. (2019), and they presented an imporved CoCoSo 
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mehtod based on the ORESTE (Wu & Liao, 2018). 

However, the improved method is still limited in increasing 

the discrimination degree among alternatives to improve the 

recognition of results. To overcome the above limitation, we 

introduce the operator of “Linear Sum Normalization” to 

normalize the three subordinate compromise scores to make 

the aggregated results reasonable.- 
In addition, the purpose of MCDM method is to find out 

the differences among alternatives in terms of the advantages 

and disadvantages among alternatives. The great 

discrimination degree of scores regarding evaluation objects 

is more helpful in supporting decision making. Existing 

difference-driven comprehensive evaluation methods (Guo, 

2012; Li et al., 2018; Ji et al., 2018) mainly depended on the 

determination of the weight coefficients to connect the 

original evaluation information and aggregated information. 

In fact, the calculated evaluation criteria weights can not 

maximize the overall differences among the evaluated 

objects, and only under the premise of linear weighting 

model can widen the difference among the evaluated objects. 

In this study, we learn from the scatter degree method (Guo, 

2012) based on the maximum variance to establish a 

nonlinear programming model, so that we can aggregate the 

three subordinate compromise scores in the CoCoSo method 

and maximize the difference among the aggregated 

evaluation scores of each evaluation object. In this way, the 

imporved CoCoSo method not only does not require 

decision-makers to give specific weights of the subordinate 

aggregation operators, but also can maximize the global and 

local differences among alternatives so as to increase the 

discrimination degree of the evaluation results and avoid the 

inconsistency ordering, which makes the decision-making 

process simple and efficient.  
 

The Proposed Method 
 

An improved CoCoSo method with a new integration 

function based on the nonlinear programming model with 

maximum variance is proposed as follows: 
Steps 1-4. The same as Steps 1-4 in the original 

CoCoSo method.  

Step 5. Apply the formula of “Linear Sum 

Normalization”, i.e., Eq. (10), to normalize the three 

subordinate compromise scores: 

1

m

ih ih ih

i

k k k


   , for 1,2, ,i m ; 1,2,3h  .     (10) 

where ihk   is the evaluation score of the i  th alternative 

under the h th aggregation strategy, ihk   is the normalized 

value of ihk , such that  0,1ihk   and 
1

1
m

ih

i

k


  .  

Step 6. Construct the objective function and its 

constraints. To make the differences among the evaluated 

objects as large as possible, the overall difference of the 

evaluated objects can be measured by the variance of the 

comprehensive evaluation value of the evaluated objects: 

 
2

2

1

1 m

i

i

S k k
m 

                         (11) 

where ik    denotes the comprehensive score of each 

evaluated object after synthesizing the three normalized 

subordinate compromise scores.  

Furthermore, using Eqs. (12) and (13), we can 

determine the reasonable range of the comprehensive score 

of each evaluated object: 

,i i ik k k                                   (12) 

1

1
m

i

i

k


                                (13) 

where  

 1 2 3min , ,i i i ik k k k     and  1 2 3max , ,i i i ik k k k    . 

According to Eq. (13), the mean of the comprehensive 

scores of all alternatives can be obtained by: 

 1 2 =1mk k k k m m                      (14) 

According to Eqs. (11) and (14), we can furtherly 

calculate the variance of comprehensive scores: 

 
2

2
2

1 1

1 1 1m m

i i

i i

S k k k
m m m 

 
      

 
            (15) 

Finally, we can construct an objective function and its 

constraint by synthesizing Eqs. (12)-(15) as following:  
2

1

1

1 1
max  

1
. .

m

i

i

m

i

i

i i i

k
m m

k
s t

k k k





 

 
 

 





    




                     (16) 

Step 7. Rank all the alternatives. The alternative with 

the maximum ik   is chosen as the optimal alternative. The 

ranking of other available alternatives are determined in 

descending order of the values of ik  , for 1,2, ,i m .  
 

Case study 
 

In this section, a case study regarding the trustworthiness 

determination of CSPs is given, which shows the 

applicability of the proposed method. First, we briefly 

describe the background of the case. Second, we apply the 

proposed method to solve the problem. Finally, we test and 

validate the proposed method. 
 

Case Description 
  

Cloud Armor is a research project at the University of 

Adelaide, which aims to develop a scalable and robust trust 

management framework for cloud environment. It contains 

more than 10,000 feedbacks related to QoS criteria, which 

are provided by nearly 7,000 customers for 114 real-world 

cloud services. In this study, the sample dataset was 

extracted from the Cloud Armor project (Noor et al., 2015), 

which has been used by other scholars (Gireesha et al., 2020; 

Singh & Sidhu, 2017; Somu et al., 2017) to validate the 

accuracy, effectiveness, and feasibility of MCDM methods 

for CSP selection problem. The dataset consists of the 

performances of 15 CSPs on 9 QoS criteria. The benchmark 

criteria include: availability (Av), response time (Rt), price 

(Pr), speed (Sp), storage space (Ss), features (Fe), ease of use 

(Eu), technical support (Ts) and customer service (Cs). All 

the criteria are assumed as beneficial criteria, and a five-

point scale was used for the criteria in which the value “1” 

indicates the most insignificant feedback score while the 

value “5” indicates the most significant feedback score. In 

addition, the relative normalized weights of the QoS criteria 

are as follows: Av = 0.1212, Rt = 0.1364, Pr = 0.1364, Sp = 
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0.1061, Ss = 0.1061, Fe = 0.0909, Eu = 0.0909, Ts = 0.1061, 

and Cs = 0.1061. 

 

Applying the MV-CoCoSo Method to Solve the 

Case 
 

Step 1. From the dataset (Noor et al., 2015), a decision 

matrix with respect to 15 CSPs on 9 QoS criteria is obtained 

as shown in Table 3. Then, we normalize the initial decision 

matrix by Eq. (2), and the results are shown in Table 4. 

Combined with the weight of each criteria, we can 

calculate the sum of the weighted comparability sequences 

and power-weighted comparability sequences by Eqs. (4) 

and (5), respectively. The vector of the sum of weighted 

comparability sequences for each CSP S   and the power-

weighted comparability sequences for each CSP P  can be 

obtained as: S  =(0.9472, 0.9383, 0.3473, 0.7590, 0.9648, 

1.0002, 0.7312, 0.9472, 0.6037, 0.4117, 0.2437, 0.9017, 0.3473, 

0.9547, 0.8891) T , P =(8.9291, 8.9278, 6.3141, 8.6797, 8.9579, 

9.0000, 8.6757, 8.9399, 8.4631, 4.7777, 5.4553, 8.8861, 6.4082, 

8.9462, 8.8679 ) T . Then, the three subordinate compromise 

scores are obtained by Eqs. (6)-(8). The results are shown in 

Table 5. Here we let  =0.5 in Eq. (8).  

Table 3 

The Decision Matrix with Respect to 15 CSPs on 9 QoS Criteria 
 

CSP Av Rt Pr Sp Ss Fe Eu Ts Cs 

CSP01 5 5 5 3 5 5 5 5 5 

CSP02 5 5 5 4 4 5 5 5 5 

CSP03 3 3 3 4 5 2 2 2 2 

CSP04 5 4 4 4 3 4 5 5 5 

CSP05 5 5 5 5 4 5 5 5 5 

CSP06 5 5 5 5 5 5 5 5 5 

CSP07 4 4 4 4 4 5 5 4 4 

CSP08 5 5 5 5 5 5 5 4 4 

CSP09 3 4 4 3 4 3 5 4 4 

CSP10 5 4 4 1 4 4 1 1 1 

CSP11 2 3 2 3 3 3 3 2 3 

CSP12 5 5 4 5 5 5 5 4 4 

CSP13 3 3 3 3 2 3 3 4 3 

CSP14 5 5 4 5 5 5 5 5 5 

CSP15 5 5 4 5 4 4 5 5 5 
 

Step 2. After obtained the results of three subordinate 

aggregation operators, the three subordinate compromise 

scores 1ik , 2ik  and 3ik  are normalized using Eq. (10).  

Step 3. We construct objective function and its 

constraints based on Eq. (16). By LINGO 17.0 software 

package, we can produce the comprehensive score of each 

CSP ik   . The final ranks can be gained accordingly as 

shown in Table 6. From Table 6, it is evident that CSP06 

( 0.0852ik  ) is determined to be the most trustworthy 

service provider. In contrast, CSP11 ( 0.0305ik  ) is 

determined to be the least trustworthy service provider. 

 
Test and Validation of the Proposed Method 

    

In this section, the performances of the MV-CoCoSo 

method are tested and validated from three aspects: 

sensitivity analysis, results consistency comparison, and 

discrimination test. 

Table 4 

The Normalized Decision Matrix 
 

CSP Av Rt Pr Sp Ss Fe Eu Ts Cs 

CSP01 1.0000 1.0000 1.0000 0.5000 1.0000 1.0000 1.0000 1.0000 1.0000 

CSP02 1.0000 1.0000 1.0000 0.7500 0.6667 1.0000 1.0000 1.0000 1.0000 

CSP03 0.3333 0.0000 0.3333 0.7500 1.0000 0.0000 0.2500 0.2500 0.2500 

CSP04 1.0000 0.5000 0.6667 0.7500 0.3333 0.6667 1.0000 1.0000 1.0000 

CSP05 1.0000 1.0000 1.0000 1.0000 0.6667 1.0000 1.0000 1.0000 1.0000 

CSP06 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CSP07 0.6667 0.5000 0.6667 0.7500 0.6667 1.0000 1.0000 0.7500 0.7500 

CSP08 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7500 0.7500 

CSP09 0.3333 0.5000 0.6667 0.5000 0.6667 0.3333 1.0000 0.7500 0.7500 

CSP10 1.0000 0.5000 0.6667 0.0000 0.6667 0.6667 0.0000 0.0000 0.0000 

CSP11 0.0000 0.0000 0.0000 0.5000 0.3333 0.3333 0.5000 0.2500 0.5000 

CSP12 1.0000 1.0000 0.6667 1.0000 1.0000 1.0000 1.0000 0.7500 0.7500 

CSP13 0.3333 0.0000 0.3333 0.5000 0.0000 0.3333 0.5000 0.7500 0.5000 

CSP14 1.0000 1.0000 0.6667 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CSP15 1.0000 1.0000 0.6667 1.0000 0.6667 0.6667 1.0000 1.0000 1.0000 
 

Table 5 

The Results of three Subordinate Aggregation Operators 
 

CSP 1ik  Rank 2ik  Rank 3ik  Rank 

CSP01 0.0753 4 5.7548 5 0.9876 5 

CSP02 0.0752 6 5.7183 6 0.9866 6 

CSP03 0.0508 13 2.7465 13 0.6661 13 

CSP04 0.0719 9 4.9306 9 0.9438 9 

CSP05 0.0756 2 5.8334 2 0.9923 2 
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CSP 1ik  Rank 2ik  Rank 3ik  Rank 

CSP06 0.0762 1 5.9873 1 1.0000 1 

CSP07 0.0717 10 4.8157 10 0.9407 10 

CSP08 0.0753 5 5.7570 4 0.9887 4 

CSP09 0.0691 11 4.2481 11 0.9067 11 

CSP10 0.0395 15 2.6889 14 0.5189 15 

CSP11 0.0434 14 2.1418 15 0.5699 14 

CSP12 0.0746 7 5.5593 7 0.9788 7 

CSP13 0.0515 12 2.7661 12 0.6755 12 

CSP14 0.0755 3 5.7895 3 0.9901 3 

CSP15 0.0744 8 5.5037 8 0.9757 8 
 

Table 6 

The Final Aggregation Ranking of the CSPs 
 

CSP 1ik   2ik   3ik   ik   Rank 

CSP01 0.0753 0.0819 0.0753 0.0819 5 

CSP02 0.0752 0.0814 0.0752 0.0814 6 

CSP03 0.0508 0.0391 0.0508 0.0391 13 

CSP04 0.0719 0.0702 0.0719 0.0702 9 

CSP05 0.0756 0.0830 0.0756 0.0830 2 

CSP06 0.0762 0.0852 0.0762 0.0852 1 

CSP07 0.0717 0.0686 0.0717 0.0686 10 

CSP08 0.0753 0.0820 0.0753 0.0820 4 

CSP09 0.0691 0.0605 0.0691 0.0605 11 

CSP10 0.0395 0.0383 0.0395 0.0383 14 

CSP11 0.0434 0.0305 0.0434 0.0305 15 

CSP12 0.0746 0.0791 0.0746 0.0791 7 

CSP13 0.0515 0.0394 0.0515 0.0394 12 

CSP14 0.0755 0.0824 0.0755 0.0824 3 

CSP15 0.0744 0.0784 0.0744 0.0784 8 
 

 

Sensitivity Analysis 
 

We perform sensitivity analysis to validate the results 

and justify the accuracy and deviation of the decision 

outcomes derived by the proposed method. The sensitivity 

analysis can help decision-makers understand the robustness 

of the method by changing the data. Here, we perform two 

sensitivity tests.  

First, we adopt the weight replacement strategy for 

sensitivity test. Since some criteria have the same weight, we 

exclude the case that the weights of criteria are still the same 

after the exchange. Finally, there are 28 different experiments 

being conducted. The weight information of each criterion in 

each experiment is shown in Table 7. For each experiment, 

the ik   values are obtained and a different name is given to 

each calculation. For example, Av-Rt denotes that the weights 

of criterion Av and criterion Rt are interchanged. Figure 1 

shows the results of the experiment of sensitivity analysis 

on the criteria weights. From Figure 1, it is clear that CSP06 

ranks the first and CSP11 ranks the last in all experiments, 

and the second-best CSP is CSP05 in the 25 experiments 

out of 28 experiments. As a whole, there are few deviations 

in other CSPs. Therefore, for the obtained results, it is 

obvious that our decision-making model is robust and 

rarely sensitive to the criteria weights. In addition, 

according to Eq. 8 (in Step 4) in the proposed algorithm, we 

can find that the effect of eventual ranking can be related 

to  . Therefore, we perform a sensitivity analysis based 

on the change of the value of   in the range from 0 to 1. 

From Table 8, it is clearly seen that for the change of   

value, there is no change in the final ranking obtained by 

the proposed method throughout the analysis. Therefore, it 

can be concluded that the final ranking results are reliable 

and robust based on the sensitivity analysis. 

The Consistency Comparison of Ranking Results 
 

Based on the ranking results, we also compare the 

proposed method with other MCDM methods, involving 

the WASPAS (Zavadskas et al., 2012), VIKOR (Opricovic, 

1998), TOPSIS (Ginting et al., 2017), CODAS (Keshavarz 

Ghorabaee et al., 2016), and the original CoCoSo method 

(Yazdani et al., 2019b), as shown in Table 9.  

From Table 9, we can find that the results obtained by 

the proposed approach have high degrees of similarity with 

those deduced by other MCDM methods. In particular, the 

top three alternatives selected by the proposed method are 

completely consistent with other MCDM methods. In 

addition, we adopt the Spearman’s rank correlation 

coefficients (Liao & Wu, 2020) to compare the ranking 

results obtained by different techniques. The correlation 

coefficient ( CC  ) is between -1 and 1. The larger value 

indicates the stronger correspondence of the compared 

rankings. If 0.8CC  , the relationship between variables 

is considered high. In this regard, the proposed method is in 

a significant consistent with the other five applied methods 

(Table 10). We can see that all the Spearman's rho 

correlation coefficient values are significant at the 0.01 

level of significance. Especially, we can find that the lowest 

correlation coefficient ( ) of the proposed method is higher 

than that of other methods from the bold part of Table 10 

(expect for the original CoCoSo method, because the 

proposed method and the original CoCoSo method have the 

same ranking result). Meanwhile, the average correlation 

coefficient ( ) of each method also be calculated as follows: 

= =0.987, =0.977, =0.978, =0.982, =0.981. These results 

imply a high reliability of our method. 
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Table 7 

Experiments for Weight Sensitivity Analysis 
 

 Definition Av Rt Pr Sp Ss Fe Eu Ts Cs 

T1 Av – Rt 0.1364 0.1212 0.1364 0.1061 0.1061 0.0909 0.0909 0.1061 0.1061 

T2 Av – Pr 0.1364 0.1364 0.1212 0.1061 0.1061 0.0909 0.0909 0.1061 0.1061 

T3 Av – Sp 0.1061 0.1364 0.1364 0.1212 0.1061 0.0909 0.0909 0.1061 0.1061 

T4 Av – Ss 0.1061 0.1364 0.1364 0.1061 0.1212 0.0909 0.0909 0.1061 0.1061 

T5 Av – Fe 0.0909 0.1364 0.1364 0.1061 0.1061 0.1212 0.0909 0.1061 0.1061 

T6 Av – Eu 0.0909 0.1364 0.1364 0.1061 0.1061 0.0909 0.1212 0.1061 0.1061 

T7 Av – Ts 0.1061 0.1364 0.1364 0.1061 0.1061 0.0909 0.0909 0.1212 0.1061 

T8 Av – Cs 0.1061 0.1364 0.1364 0.1061 0.1061 0.0909 0.0909 0.1061 0.1212 

T9 Rt – Sp 0.1212 0.1061 0.1364 0.1364 0.1061 0.0909 0.0909 0.1061 0.1061 

T10 Rt – Ss 0.1212 0.1061 0.1364 0.1061 0.1364 0.0909 0.0909 0.1061 0.1061 

T11 Rt – Fe 0.1212 0.0909 0.1364 0.1061 0.1061 0.1364 0.0909 0.1061 0.1061 

T12 Rt – Eu 0.1212 0.0909 0.1364 0.1061 0.1061 0.0909 0.1364 0.1061 0.1061 

T13 Rt – Ts 0.1212 0.1061 0.1364 0.1061 0.1061 0.0909 0.0909 0.1364 0.1061 

T14 Rt – Cs 0.1212 0.1061 0.1364 0.1061 0.1061 0.0909 0.0909 0.1061 0.1364 

T15 Pr – Sp 0.1212 0.1364 0.1061 0.1364 0.1061 0.0909 0.0909 0.1061 0.1061 

T16 Pr – Ss 0.1212 0.1364 0.1061 0.1061 0.1364 0.0909 0.0909 0.1061 0.1061 

T17 Pr – Fe 0.1212 0.1364 0.0909 0.1061 0.1061 0.1364 0.0909 0.1061 0.1061 

T18 Pr – Eu 0.1212 0.1364 0.0909 0.1061 0.1061 0.0909 0.1364 0.1061 0.1061 

T19 Pr – Ts 0.1212 0.1364 0.1061 0.1061 0.1061 0.0909 0.0909 0.1364 0.1061 

T20 Pr – Cs 0.1212 0.1364 0.1061 0.1061 0.1061 0.0909 0.0909 0.1061 0.1364 

T21 Sp – Fe 0.1212 0.1364 0.1364 0.0909 0.1061 0.1061 0.0909 0.1061 0.1061 

T22 Sp – Eu 0.1212 0.1364 0.1364 0.0909 0.1061 0.0909 0.1061 0.1061 0.1061 

T23 Ss – Fe 0.1212 0.1364 0.1364 0.1061 0.0909 0.1061 0.0909 0.1061 0.1061 

T24 Ss – Eu 0.1212 0.1364 0.1364 0.1061 0.0909 0.0909 0.1061 0.1061 0.1061 

T25 Fe – Ts 0.1212 0.1364 0.1364 0.1061 0.1061 0.1061 0.0909 0.0909 0.1061 

T26 Fe – Cs 0.1212 0.1364 0.1364 0.1061 0.1061 0.1061 0.0909 0.1061 0.0909 

T27 Eu – Ts 0.1212 0.1364 0.1364 0.1061 0.1061 0.0909 0.1061 0.0909 0.1061 

T28 Eu – Cs 0.1212 0.1364 0.1364 0.1061 0.1061 0.0909 0.1061 0.1061 0.0909 

Table 8 

The Experiment Results of Sensitivity Analysis of the Parameter   
 

CSP λ=0 λ=0.1 λ=0.2 λ=0.3 λ=0.4 λ=0.5 λ=0.6 λ=0.7 λ=0.8 λ=0.9 λ=1 

CSP01 5 5 5 5 5 5 5 5 5 5 5 

CSP02 6 6 6 6 6 6 6 6 6 6 6 

CSP03 13 13 13 13 13 13 13 13 13 13 13 

CSP04 9 9 9 9 9 9 9 9 9 9 9 

CSP05 2 2 2 2 2 2 2 2 2 2 2 

CSP06 1 1 1 1 1 1 1 1 1 1 1 

CSP07 10 10 10 10 10 10 10 10 10 10 10 

CSP08 4 4 4 4 4 4 4 4 4 4 4 

CSP09 11 11 11 11 11 11 11 11 11 11 11 

CSP10 14 14 14 14 14 14 14 14 14 14 14 

CSP11 15 15 15 15 15 15 15 15 15 15 15 

CSP12 7 7 7 7 7 7 7 7 7 7 7 

CSP13 12 12 12 12 12 12 12 12 12 12 12 

CSP14 3 3 3 3 3 3 3 3 3 3 3 

CSP15 8 8 8 8 8 8 8 8 8 8 8 

Discrimination Test 
 

Decision-makers evaluate an alternative by various 

methods, mainly relying on the final scores of alternatives. 

If there is a large gap among the scores of different 

alternatives, it is easy to determine the ranking of 

alternatives. Otherwise, it is somewhat difficult to rank 

when the gap among these scores is small. In this sense, we 
perform a discrimination test to verify the discrimination 

degree of the proposed methods from the local and global 

points of view.  

Table 9 
 

The Ranking Comparison between the Proposed Method and other MCDM Methods 
 

CSP MV-CoCoSo CoCoSo TOPSIS VIKOR WASPAS CODAS 

CSP01 5 5 8 5 6 5 

CSP02 6 6 5 6 4 4 

CSP03 13 13 13 13 13 14 

CSP04 9 9 9 9 9 9 

CSP05 2 2 2 2 2 2 

CSP06 1 1 1 1 1 1 

CSP07 10 10 10 10 10 10 

CSP08 4 4 4 4 5 6 

CSP09 11 11 11 11 11 11 
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CSP MV-CoCoSo CoCoSo TOPSIS VIKOR WASPAS CODAS 

CSP10 14 14 14 12 15 13 

CSP11 15 15 15 15 14 15 

CSP12 7 7 7 7 8 8 

CSP13 12 12 12 14   12 12 

CSP14 3 3 3 3    3 3 

CSP15 8 8 6 8    7 7 

Table 10 
 

Numerical Results of Spearman’s Rho Test of Correlation Significance of Ranks between the Compared Methods 
 

 Spearman’s rho MV-CoCoSo CoCoSo TOPSIS VIKOR WASPAS CODAS 

MV-CoCoSo 
Correlation 

Coefficient 
1.000 1.000** .975** .986** .982** .979** 

CoCoSo 
Correlation 
Coefficient 

1.000** 1.000 .975** .986** .982** .979** 

TOPSIS 
Correlation 

Coefficient 
.975** .975** 1.000 .961** .982** .968** 

VIKOR 
Correlation 
Coefficient 

.986** .986** .961** 1.000 .961** .971** 

WASPAS 
Correlation 

Coefficient 
.982** .982** .982** .961** 1.000 .986** 

CODAS 
Correlation 
Coefficient 

.979** .979** .968** .971** .986** 1.000 

Note: ** denotes the correlation was significant at 0.01 level (double tail). 
 

 

Figure 1. Results of the Sensitivity Analysis on the Criteria Weights 
 

To test the local discrimination degree, we compare the 

proposed method with the original CoCoSo method by Eq. 

(17), which uses the relative deviation (Ke et al., 2007) to 

demonstrate the improvement of the proposed method in 

terms of the discrimination degree:  

max sec

max

100%
 





                       (17) 

where max   and sec   denote the final scores of the 

alternatives that rank at the first preferred position and the 

second preferred position.    denotes the relative 

deviation between the first preferred alternative and the 

second preferred alternative. The higher    is, the better 

the method is in discrimination. 

Suppose that   1, 2, ,iA i m   are alternatives, tD

( 1,2, , )t q   are decision-making methods, the values 

for the alternatives obtained by different methods are itH

( 1, , ; 1, , )i m t q   . To test the global discrimination 

degree of each method, the discrimination ability index tQ  

could be built as (Ma, 2019): 

1

1
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m
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i

H t q
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


                   (18) 
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, 1,2, ,i jt it jt
i j m
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t

t

Q t q



                      (20) 

where tQ   reflects the discrimination ability of 

alternative iA   ranked by tD  . The higher Q   is, the 

better the method is in discrimination. 
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Table 11 
 

The Dataset of a Logistic Provider Selection in the Original 

CoCoSo Method (Yazdani et al., 2019) 
 

 Criteria 

Alternatives C1 C2 C3 C4 C5 

Criteria type Benefit Cost Benefit Benefit Benefit 

Weights 0.036 0.192 0.326 0.326 0.12 

A1 60 0.4 2,540 500 990 

A2 6.35 0.15 1,016 3,000 1,041 

A3 6.8 0.1 1,727.2 1,500 1,676 

A4 10 0.2 1,000 2,000 965 

A5 2.5 0.1 560 500 915 

A6 4.5 0.08 1,016 350 508 

A7 3 0.1 1,778 1,000 920 
 

By Eq. (17), we can obtain that the   of the proposed 

method is 2.58 %, while the    of the original CoCoSo 

method is 2.07 % in this case study. In addition, by Eq. (18)-

(20), we can obtain that the Q  of the proposed method is 

37.83, while the Q   of the original CoCoSo method is 

30.24. Thus, we can conclude that, compared with the 

original CoCoSo method, the proposed method is easier to 

make final decision.  

We also use the dataset associated with the original 

CoCoSo method (Yazdani et al., 2019) to validate the 

performance of the proposed algorithm. The dataset was 

related to a logistic provider selection problem, as displayed 

in Table 11.  

Table 12 gives the final scores and ranks of each 

alternative derived by the proposed method and the original 

CoCoSo method. From Table 12, we can find that the 

proposed method has the same ranking results as those 

derived by the original CoCoSo method. However, the   

of the proposed method is 3.66 %, while the    of the 

original CoCoSo method is 3.26 %; the Q   of the 

proposed method is 6.07, while the Q   of the original 

CoCoSo method is 5.75. Hence, it can be concluded that the 

discrimination ability of alternatives ranking of the 

proposed method is superior to the original CoCoSo 

method from the local and global perspectives.  

Conclusions 
 

In this study, we proposed an improved CoCoSo 

method for the CSP selection. The final aggregation 

operator in the original CoCoSo method takes the equal 

importance of the three subordinate compromise scores. To 

avoid this defect, we introduced the “Linear Sum 

Normalization” to normalize the three subordinate 

compromise scores so as to make the aggregated results 

reasonable. In addition, we introduced a nonlinear 

programming model with variance maximization to 

aggregate the three subordinate compromise scores and 

maximize the divergence among the aggregated scores of 

each evaluation object. The proposed method can avoid 

contradictory and increase the discrimination degree of 

evaluation results, so as to help decision-makers select the 

optimal CSP. To prove the advantages of the proposed 

method, a numerical example of the trust evaluation of 

CSPs was conducted based on the synthetic and real cloud 

data derived from the Cloud Armor project. By sensitive 

analysis, the stability of the proposed model was approved. 

The ranking results was highly consistent with those 

deduced by other existing decision-making methods. 

Furthermore, the results of discrimination test also 

indicated that the proposed method is more effective than 

the original CoCoSo method to identify the subtle 

difference among alternatives.  

Our future work will focus on extending this algorithm 

by Z-numbers and D-numbers to support MCDM for 

handling information reliability problems involved in the 

decision-making process and enhance evidential reasoning 

ability for increasing the accuracy of CSP selection. In 

addition, we intend to further optimize our approach and 

explore its applicability in renewable energy investment 

and green economy development. Since the essence of a 

green economy is the sustainable development of the 

economy with the coordinated development of both 

ecology and economy, it needs to consider multiple 

conflicting criteria, which will lead to inaccessibility of 

utopia alternatives. 

Table 12 

The Ranking Results of MV-CoCoSo and Original CoCoSo Method 
 

Alternatives 1ik  2ik  3ik  
CoCoSo MV-CoCoSo 

ik  Rank ik   Rank 

A1 0.131 3.245 0.724 2.041 5 0.131 5 

A2 0.175 4.473 0.973 2.788 2 0.184 2 

A3 0.18 4.64 1 2.882 1 0.191 1 

A4 0.163 3.721 0.906 2.416 4 0.154 4 

A5 0.088 2 0.487 1.299 7 0.082 7 

A6 0.097 2.225 0.54 1.443 6 0.092 6 

A7 0.165 3.951 0.915 2.519 3 0.165 3 
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