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Inventory management is an important part of supply chain management: inventory shortages could result in reduced 

delivery speeds and response speeds while excess inventory could lead to increased inventory and operating costs. Therefore, 

finding ways to efficiently control inventory has become an issue companies are most concerned about. Choosing a proper 

inventory management method based on the lead-time demand distribution fitted from historical data has become the key 

criteria to solve this issue. However, it is difficult to determine the lead-time distribution based on the limited amount of 

historical data directly. Thus, the method this report introduces uses a multivariate higher-order Markov chain to reconstruct 

historical data in order to expand the amount of data used to fit the lead-time distribution of demand, which is significant for 

inventory management. 
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Introduction 

 

If an enterprise wants to gain a firm and ongoing 

foothold in an increasingly competitive market, it must 

ceaselessly improve its speed of supply and its accounting 

efficiency while still ensuring the quality of its provided 

goods and services. Improving the efficiency and quality of 

supply are closely related to inventory management, and 

how well inventory management is performed has become 

one of the key issues of enterprise management. 

Inventory management is the process of forecasting, 

planning, executing, and controlling stock replenishment 

order according to external requirements for inventory and 

characteristics of enterprise ordering, where two kinds of 

issues need to be considered. The first issue concerns the 

actual ordering stock in terms of time, approaches and 

amount. The second is to control the cost of ordering and 

inventories to maximize profits. Poor inventory management 

can lead to inefficiencies or excess stock. On the one hand, 

when enterprises face bulk orders, insufficient raw material 

inventory can result in failures in production and supply, and 

the lack of supplies for maintenance and infrastructure can 

reduce the speed at which businesses deal with emergencies, 

further slowing down supply rates due to the potential 

equipment downtime problems. On the other hand, 

overstocking can cause increased inventory costs, including 

storage costs and the natural wastage of goods, and result in 

reduced efficiency and liquidity of enterprise funds. 

Therefore, the enactment of reasonable inventory 

management strategies, appropriate methods of calculating 

inventory levels, and reordering points, as well as other key 

issues in inventory management, can all improve the supply 

efficiency and quality of capital utilization and enhance the 

competitiveness of an enterprise. 

The lead-time demand distribution according to 

historical data is often the presupposition and basis of 

selection and application of inventory management 

strategies. Therefore, the realization of lead-time demand 

distribution is one of the most important problems that must 

be solved in the inventory management process. However, 

the real lead-time demand data sample size used to fit 

distribution is often too small because of poor data 

management or limited period of demand. Therefore, this 

paper presents a multiple variable high-order Markov chain 

to reconstruct the historical demand data, expand the amount 

of data used to fit the distribution, and then obtain lead-time 

demand distribution. A lack of sufficient historical demand 

data in electric power enterprises is a major obstacle to 

obtaining the lead-time demand distribution, thus it is very 

difficult to control their inventory management. Considering 

the important role power enterprises play in business 

operation and residents’ daily life, the empirical analysis 

part of this paper, which focuses on the solution of the lead-

time demand distribution of power supplies in Shanghai 

Power Corporation, has important social significance. 
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Literature Review 
 

Scholars have proposed their own inventory 

management strategies from different perspectives. 

Generally these can be classified into two categories: 

The first type of research directly uses demand 

distribution to conduct inventory management. According to 

lead-time demand, which obeys both normal and Gamma 

distribution of spare parts, Strijbosch, Heuts and Van der 

Schoot (2000) put forward different inventory management 

models based on a (s, Q) strategy, providing optimal order 

quantity and order point, where s is the reorder point and Q 

is the order quantity. Elsayed and Teresi (1983) proposed 

another economic order quantity (EOQ) model for 

deteriorating products subject to normal distribution. Snyder 

(2002) used the Bernoulli distribution to determine the 

probability of demand occurrence, and then used the 

Bootstrap method to generate the lead demand for multiple 

sets of estimates in order to calculate service levels, reorder 

point and order quantity. In some studies, the demand 

sequence is fitted as a compound Bernoulli distribution, 

compound Poisson distribution, and compound Erlang 

distribution, and then put through cost-oriented modeling in 

order to gain the optimal inventory level under the minimum 

expected cost (Archibald & Silver, 1978; Babai, Jemai, & 

Dallery, 2011; Cheung, 1996; Feeney & Sherbrooke, 1966; 

Larsen & Thorstenson, 2008; Smith & Dekker, 1997; 

Teunter, Syntetos, & Babai, 2010). Unlike the inventory 

policies of continuous inspection adopted in the literature 

above, other studies adopted cyclical inspection strategies 

(Ehrhardt, 1979; Naddor, 1975; Porteus, 1985; Roberts, 

1962; Veinott & Wagner, 2011; Wagner, 1975). Sani and 

Kingsman (1997) performed a contrasting study of the 

various forms of (T, s, S) algorithms mentioned in the above 

literature where T represents the time period that elapses 

between reviews and S is the replenishment level, and found 

that Power Approximation (Ehrhardt, 1979), Normal 

Approximation (Wagner, 1975) and Naddor’s heuristic 

(Naddor, 1975) performed better with demand inventory 

control, and the difference between the three algorithms was 

small. Babai, Jema and Dallery (2011) conducted a similar 

study and found that Power Approximation and Naddor’s 

heuristic were better in terms of calculating the optimal 

order-up-to level. Chelbi and Ait-Kadi (1999) discussed that 

when the life distribution, lead-time demand distribution, 

and replenishment parts inventory management costs are 

known, a numerical algorithm can optimize the storage 

strategy of spare parts. 

The other kind of research combines the demand 

forecast value and the demand distribution to implement the 

stock management. Silver (1965) used the Bayesian method 

to forecast the demand, and then calculated the posterior 

probability to obtain the distribution of demand after the 

lead-time demand was calculated, thus the reorder point and 

order quantity were determined. Pilinkiene (2008) analysed 

how to select the appropriate market demand forecast 

methods to determine the Lithuanian furniture demand 

forecast. Teunter and Sani (2009) combined the demand 

forecast value and the lead-time demand distribution 

obtained by the Croston method to determine the maximum 

inventory level. Kourentzes (2013) used a neural network to 

forecast the demand, and then used the same strategy as 

Teunter and Sani (2009) to manage the inventory. Chandra 

and Grabis (2005) applied an autoregressive model to the 

demand forecasting and proposed a material requirement 

planning based on inventory management  method to reduce 

the order quantity variance. By applying an exponential 

smoothing method to make predictions, Su and Wong 

(2008) combined a (k, T0) and two-stage ant colony 

optimization to determine the optimal replenishment cycle 

(T0) and the excess order quantity (k) to compensate for 

demand fluctuations.  Liu and Lian (1999) used the hidden 

Markov model to predict the demand for continuous review 

perishable inventory system, and put forward an (s, S) 

inventory model for fixed lifecycle goods with continuous 

demand. They found that the replenishment level (S) always 

increased monotonically with reorder level (s). Leven and 

Segerstedt (2004) calculated the lead-time probability for the 

shortage of two materials whose demand distribution 

satisfied the Erlang and normal distributions. They used a 

revised Croston method and an exponential smoothing 

method to forecast the demand and then established an 

inventory management model. 

Although these two kinds of research have different 

perspectives on inventory management, they are proposed 

on the basis of known demand distribution of lead-time. As 

for those materials with historical data that are too small to 

fit, it is difficult to obtain a lead-time demand distribution, 

so these above inventory management methods cannot be 

directly applied. To solve this problem, Kocer (2013) 

proposed obtaining the lead-time demand distribution by 

using a single-variable high-order Markov chain model to 

reconstruct the historical demand data. Besides the 

limitation of small historical data samples, the uncertainty of 

known historical demand data also significantly influences 

the demand prediction. He and Jiang (2017) pointed out the 

limited application of the classical Discrete-time Markov 

chain (DTMC) in a complex system with uncertain 

information or continuous state space and proposed a new 

belief Markov chain to solve these problems based on 

Dempster-Shafer evidence theory. This model handles 

uncertain data in the form of interval numbers and generates 

a basic probability assignment based on the distance 

between interval numbers. However, in the application of 

the higher-order Markov chain these two methods only 

consider the autocorrelation of the demand time series of the 

material itself, but do not consider the lag of the interaction 

between different materials. 

Additionally, in recent years the Markov chain model 

has been applied in solving variable problems from different 

aspects. Chiachío et al. (2020) stated that a prognostics 

methodology, which relies on a stochastic damage model 

based on Markov chains, could deal with complex 

degradation processes in metallic materials. Andersen, 

Nielsen and Reinhardt (2017) proposed a mathematical 

method to ensure adequate hospital beds by redistributing 

the existing wards in the hospital. The continuous-time 

Markov chain was used to model the patient flow, and the 

optimization was carried out using local search heuristics. 

Chen, Liu and Jiang (2021) solved the optimization problem 

of multi-state components system maintenance by using an 

embedded Markov chain model to characterize the 

deterioration of above system. Feldman and Topaloglu 

(2017) devised a Markov chain choice model to solve three 
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classes of revenue management problems related to when 

customers choose from the offered products. Karapetyan, 

Punnen and Parkes (2017) designed a new metaheuristic 

schema called the Conditional Markov Chain Search which 

was flexible enough to model several standard 

metaheuristics when solving the Bipartite Boolean Quadratic 

Programming Problem.  

This paper studies the inventory materials that are 

difficult to directly fit the lead-time demand distribution 

based on the limited amount of historical demand data. 

Applying the existing method that a single variable high-

order Markov chain is used to solve the lead-time demand 

distribution, a multivariate high-order Markov chain is 

introduced by incorporating the interaction between 

materials. The multivariate high-order Markov chain 

reconstructs data to fit the lead-time demand distribution. 

 
Multivariate Higher-order Markov chain-

Based Research on Distribution of Lead-Time 

Demand 
 

The traditional Markov chain is a fuzzy random model 

for demand forecasting. This model divides the real demand 

data into two statuses, either “happened” or “not happened”, 

and then uses the autocorrelation of data sequences to 

maintain and pass the historical requirement information to 

the next point by a one-step transition probability matrix 

obtained by summarizing historical data. According to a 

single-variable high-order Markov chain model, Kocer 

(2013) proposed a method of obtaining lead-time demand 

distribution by reconstructing historical demand data. 

However, this method only considers the autocorrelation of 

a material’s demand time series, not the interaction between 

different materials. Therefore, this paper takes the relative 

effects of different materials into account during the process 

of reconstructing the historical demand data by using a 

multivariate high-order Markov chain model, thus fixing the 

deficiencies of the method mentioned above. 

In this paper, the Markov chain is considered as a tool 

for reconstructing historical data to obtain lead-time demand 

distribution. On the basis of the method proposed by Kocer, 

the dependence between different data sequences is 

introduced into the data processing, and then the lead-time 

demand distribution is obtained by using multivariate high-

order Markov chain. Firstly, the demand data of each 

material is matched with the state. Secondly, the n-step 

transition probability matrix between one material and the 

other materials, as well as the transfer of the material itself, 

is calculated. The result is applied to a multivariate higher-

order Markov chain model to derive a state probability 

vector at each time point within a new historical period. This 

is achieved by using the first few historical periods of 

demand data as the raw values of the later historical demand 

data. Then, taking the obtained probability as the weight, 

sampling of the demand quantity of each state is randomly 

repeated to form the new historical demand sequence. 

Finally, the lead-time demand distribution is fitted by 

combining the new requirement sequences and lead-times. 

In order to state the multivariate higher-order Markov 

chain more explicitly, some explanation is required before 

each specific state. In a single variable higher order Markov 

chain, since there is more than one transition probability, the 

state probability vector formula is：   

(t )
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According to formula (2), the corresponding weight i  

of each transfer matrix iP is also required. The optimization 
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where 1 1ˆQ X P  , 2 2ˆQ X P  … ˆn nQ X P  . 

X̂ represents the steady-state state vector, which is 

characterized by the probability distribution of each state of 

the known historical interval. For a careful deformation 

process, the reader is referred to a technical article: Ching, 

Fung and Ng (2004).  

Based on the interaction of different demand sequences 

in multivariate high-order Markov chain, the order of each 

two sequences is first determined by their cross-correlation 

function. Then the maximum order is selected as the order of 

the model. Let multivariate demand sequence samples be 

 , 1,2, ,s; t 1,2,k

tx k N  .The cross-correlation function 
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The order between demand sequences i  and j can be 

determined as the value ijd  the moment the cross-

correlation function ( )ijr d  between two sequences reaches 
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zero. A correlation between sequences i  and j exists when 
ijd d , otherwise it is considered that there is no correlation. 

The order n  of the multivariate high-order Markov model 

should be taken as: 

 
1 ,1

max ij

i s j s
n d

   
   (5) 

In the multivariate higher-order Markov chain, the 

solving method of multivariate multi-step transfer 

probability matrix jk

hP   is basically the same as that of 

single variable multi-step transition probability matrix, but 

the calculation of multi-step transfer frequency transferred 

from all other sequences to this sequence needs to be 

considered. Ching (2002) provided an example to explain 

the multi-step transition probability matrix between different 

sequences. Since the transition probability matrix occurs 

with the multi-step transition matrix of the sequence itself, 

there are other transition probability sequences for the 

matrix. Therefore, the optimal solving model of weight h

jk  

corresponding to the transition probability matrix jk

hP  is 

more complicated than the one cited by single variable high 

order models, which is shown in formula (6). 
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where 1 2( , ...... )n T

jh jh jh jh    . 

The specific process of reconstructing historical data is 

as follows: 

Step 1. Selecting s  materials, the demand quantity of 

each one is standardized and the states are set according to 

the same standard. Among them, the state for the high-

frequency demand is individually set, and the state for the 

low-frequency demand is set according to the equal interval 

length after standardization. 

Step 2. The cross-correlation order between each of the 

two materials is determined according to the dependence of 

different materials. The maximum is chosen as the order of 

the Markov chain. 

Step 3. Finding the h-step transition matrix 

( 1, 2, , ; , 1,2, ,s)jk

hP h n j k  . jk

hP  is the h-step transition 

matrix from the k th material to the j th material.  

Step 4. According to the stationary state vector and the 

multistep transition matrix, an optimization model is 

established to determine the coefficients h

jk  of the h-step 

transition matrix jk

hP (where 0h

jk   

 and 
1

1, 1,2, ,s
s n

h

jk

k h

j


  ). 

Step 5. The multiple higher-order Markov formula is 

used to obtain the state probability vector 1

j

tX   at time 1t   

of the k th material: 
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t jk h t h

k h

X P X  

 

   (8) 

where 1

k

t hX    is the actual state probability vector of the 

k th material at time  1t h   .  

Step 6. The probability value of each state in 1

j

tX   is 

used as the weight of the corresponding demand quantity of 

the j th material in different states, where the probability of 

a state composed of a plurality of demand quantities will be 

evenly assigned to each demand of the group. Next, random 

sampling is conducted according to the weight and then the 

new demand sequence is reconstructed based on historical 

data, followed by repeated sampling to obtain several 

multiple demand sequences. 

Step 7. The accuracy jr  of each reconstructed demand 

sequence for the j th material is calculated, and then the 

largest one is selected as the finalized accuracy of 

reconstructed demand sequences. The definition of jr  is as 

follows: 

1
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, jT  is the length of the j th 

material requirement sequence. D j

t  is the value of the demand 

of the j th material at time t  obtained from random sampling 

according to the probability. D j

t  is the actual demand of the 

j th material at the time t  in the historical data.  

Step 8. Steps six and seven are repeated several times to 

obtain sets of reconstructed demand data in the historical 

period. 

Step 9. According to the fixed lead-time, the sets of 

reconstructed demand data are summed as lead-time demand 

data, and the lead-time demand distribution is obtained by 

fitting these data. 

 
Empirical Analysis 

 

Selecting 50 kinds of power supplies from the Shanghai 

Power Corporation, this study empirically researches 

monthly demand data for 36 months from 2011 to 2013. In 

order to show the operation process of multivariate high-

order Markov chain, this paper further selects five kinds of 

materials belonging to the same subclass, whose cross-
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correlation coefficients are relatively large, to obtain the 

lead-time demand distribution of each group. It should be 

pointed out that in practical application, material selection 

can be arbitrary, and there is no need to use categories as 

criteria for selection. The basic information of the five 

materials in this example is shown in Table 1. 

Firstly, the demand quantity of each material is 

standardized and then conditions set according to the same 

standard. Among them, the state is individually set for the 

high-frequency demand, and the state group for the low-

frequency demand is set according to the equal interval 

length after standardization. 

Because the standardized data of these five materials in 

this example have a stronger jump when the value is larger 

than 1, after standardization, the demands which are greater 

than 1 are divided into one group to have one state. The 

other standardized data are divided into three groups on 

average to set three different states. However, due to the 

different data characteristics of different materials, the state 

setting standards should be considered individually. 
Table 1 

 

Basic Information of Materials 
 

Material Models 
Sub-subclass 

description 

Subclass 

description 

Class 

description 

500031139 
10kV cable terminations, 3 * 400, indoor terminals, 

prefabricated, Cuprum 

35kV and below cable 

terminals 
Cable accessories Device material 

500021270 
10kV cable terminations, 3 * 120, indoor terminals, 

prefabricated, Cuprum 

35kV and below cable 

terminals 
Cable accessories Device material 

500032513 
10kV cable terminations, 3 * 240, indoor terminals, 

prefabricated, Cuprum 

35kV and below cable 

terminals 
Cable accessories Device material 

500021283 
10kV cable terminations, 3 * 120, outdoor 
terminals, prefabricated, Cuprum 

35kV and below cable 
terminals 

Cable accessories Device material 

500032519 
10kV cable terminations, 3 * 70, indoor terminals, 

prefabricated, Cuprum 

35kV and below cable 

terminals 
Cable accessories Device material 

 

Table 2 
 

Material State Distribution  
 

  
State 

1 2 3 4 5 

500031139 

Material 1 

Demand 0 
3, 7, 14, 15, 16, 19, 21, 

22 
27, 31, 32, 34, 41 42, 45, 46, 50, 54, 55 72, 75, 87, 90 

Standardized 

range 
-1.27 (-1.15, -0.39) (-0.19, 0.38) (0.42, 0.94) (1.63, 2.35) 

500021270 

Material 2 

Demand 0 2, 3, 8, 28 
35, 37, 38, 43, 52, 54, 60, 

63, 64 

67, 69, 70, 72, 73, 74, 77, 

88, 89, 92, 95, 96 
102, 103, 106, 114, 138 

Standardized 

range 
-1.61 (-1.56, -0.85) (-0.66, 0.13) (0.21, 1.00) (1.16, 2.14) 

500032513 

Material 3 

Demand 0 
1, 2, 4, 5, 7, 12, 13, 14, 

15, 17 

20, 21, 22, 23, 26, 29, 34, 

35, 39 
43, 45, 46, 50, 51, 60 98, 103, 110, 126 

Standardized 

range 
-0.99 (-0.96, -0.47) (-0.37, 0.21) (0.33, 0.86) (2.03, 2.89) 

500021283 

Material 4 

Demand 0 1, 3, 4, 8, 9 10, 12, 13, 14, 15, 16, 18 20, 21, 22 25, 29, 30, 31, 32 

Standardized 

range 
-1.48 (-1.37, -0.50) (-0.39, 0.48) (0.70, 0.91) (1.24, 2.00) 

500032519 

Material 5 

Demand 0 1, 4, 10, 14, 24 
40, 43, 44, 48, 50, 55, 56, 

57, 61, 64 
69, 78, 79, 85, 95, 100, 

101 
107, 109, 113, 115, 127, 

149 

Standardized 

range 
-1.4 (-1.38, -0.84) (-0.46, 0.10) (0.22, 0.97) (1.11, 2.10) 

 

Taking material 500032513 as an example, a higher 

frequency demand 0 is set as state 1, and the demand 

whose standardized value is greater than 1, such as 98, 103, 

110 and 126, is divided into one group set as state 5. Since the 

difference between the maximum and minimum values of the 

remaining standardized data is about 1.5, they are divided into 

three groups with 0.5 intervals, thus three states are set. That 

is, the standard data of demand in the range between -0.96 to -

0.47 are grouped as state 2, the standard data of demand in the 

range between -0.37 to 0.21 are grouped as state 3, and the 

standard data of demand in the range of 0.33 to 0.86 are 

grouped as state 4. The same method is used to set the states 

for five materials. The concrete conditions of the five sets of 

materials are set out in Table 2. 

Then, according to the cross correlation between each 

two of the five materials’ demand sequences, the order of 

cross correlation between the materials is obtained, and the 

maximum one is 3, which is the higher-order Markov chain. 

Therefore, the five-variate third-order Markov chain model 

is used for subsequent calculation. 

Then, the transition frequency matrix 1k

hF  is calculated 

along with the corresponding transition probability matrix 
1k

hP  of the four materials to material 1, as well as the 

transition frequency matrix 11

hF  of material 1 itself and its 

corresponding transition probability matrix 11

hP . Since the 

case of five materials interacting each other is a third-order 

Markov process, a total of 15 transition probability matrix 

for the material 1 can be obtained. The transition frequency 

matrix and the transition probability matrix for material 1 

are shown as follows: 
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1 1

11 11

2 3 0 0 0 1.00 0.50 0.00 0.00 0.00

0 2 3 3 2 0.00 0.33 0.30 0.25 0.40

0 1 2 4 1 0.00 0.17 0.20 0.33 0.20

0 0 5 2 1 0.00 0.00 0.50 0.17 0.20

0 0 0 3 1 0.00 0.00 0.00 0.25 0.20

F P

   
   
   
    
   
   
   
   

2 2

11 11

1 3 0 0 0 0.50 0.50 0.00 0.00 0.00

1 1 3 3 2 0.50 0.17 0.30 0.27 0.40

0 1 4 2 1 0.00 0.17 0.40 0.18 0.20

0 1 3 3 1 0.00 0.17 0.30 0.27 0.20

0 0 0 3 1 0.00 0.00 0.00 0.27 0.20

F P

   
   
   
    
   
   
   
   

11 11

3 3

2 2 0 0 0 1.00 0.33 0.00 0.00 0.00

0 1 4 2 2 0.00 0.17 0.40 0.20 0.40

0 1 2 3 2 0.00 0.17 0.20 0.30 0.40

0 2 3 3 0 0.00 0.33 0.30 0.30 0.00

0 0 1 2 1 0.00 0.00 0.10 0.20 0.20

F P

   
   
   
    
   
   
   
   

 

12 12

3 3

2 2 0 0 0 0.67 0.17 0.00 0.00 0.00

1 2 3 3 0 0.33 0.17 0.30 0.43 0.00

0 4 1 3 0 0.00 0.33 0.10 0.43 0.00

0 4 4 0 0 0.00 0.33 0.40 0.00 0.00

0 0 2 1 1 0.00 0.00 0.20 0.14 1.00

F P

   
   
   
    
   
   
   
   

 

1 1

13 13

2 3 0 0 0 0.67 0.27 0.00 0.00 0.00

1 4 3 1 1 0.33 0.36 0.27 0.17 0.25

0 2 3 2 1 0.00 0.18 0.27 0.33 0.25

0 1 4 2 1 0.00 0.09 0.36 0.33 0.25

0 1 1 1 1 0.00 0.09 0.09 0.17 0.25

F P

   
   
   
    
   
   
   
   

2 2

13 13

0 4 0 0 0 0.00 0.36 0.00 0.00 0.00

2 1 4 1 2 0.67 0.09 0.36 0.17 0.67

1 2 3 2 0 0.33 0.18 0.27 0.33 0.00

0 3 2 2 1 0.00 0.27 0.18 0.33 0.33

0 1 2 1 0 0.00 0.09 0.18 0.17 0.00

F P

   
   
   
    
   
   
   
   

 

13 13

3 3

1 3 0 0 0 0.33 0.27 0.00 0.00 0.00

0 2 4 2 1 0.00 0.18 0.40 0.33 0.33

1 3 1 2 1 0.33 0.27 0.10 0.33 0.33

1 2 4 0 1 0.33 0.18 0.40 0.00 0.33

0 1 1 2 0 0.00 0.09 0.10 0.33 0.00

F P

   
   
   
    
   
   
   
   

 

1 1

14 14

4 1 0 0 0 1.00 0.17 0.00 0.00 0.00

0 4 3 2 1 0.00 0.67 0.27 0.25 0.17

0 1 4 2 1 0.00 0.17 0.36 0.25 0.17

0 0 4 2 2 0.00 0.00 0.36 0.25 0.33

0 0 0 2 2 0.00 0.00 0.00 0.25 0.33

F P

   
   
   
    
   
   
   
   

 

2 2

14 14

2 2 0 0 0 0.50 0.33 0.00 0.00 0.00

2 0 5 1 2 0.50 0.00 0.45 0.13 0.40

0 2 3 2 1 0.00 0.33 0.27 0.25 0.20

0 2 3 2 1 0.00 0.33 0.27 0.25 0.20

0 0 0 3 1 0.00 0.00 0.00 0.38 0.20

F P

   
   
   
    
   
   
   
   

 

14 14

3 3

2 2 0 0 0 0.50 0.33 0.00 0.00 0.00

1 1 3 3 1 0.25 0.17 0.27 0.43 0.20

1 1 2 2 2 0.25 0.17 0.18 0.29 0.40

0 2 6 0 0 0.00 0.33 0.55 0.00 0.00

0 0 0 2 2 0.00 0.00 0.00 0.29 0.40

F P

   
   
   
    
   
   
   
   

1 1

15 15

4 1 0 0 0 0.67 0.10 0.00 0.00 0.00

2 3 4 1 0 0.33 0.30 0.50 0.13 0.00

0 3 0 5 0 0.00 0.30 0.00 0.63 0.00

0 3 3 2 0 0.00 0.30 0.38 0.25 0.00

0 0 1 0 3 0.00 0.00 0.13 0.00 1.00

F P

   
   
   
    
   
   
   
   

2 2

15 15

3 1 0 0 0 0.50 0.10 0.00 0.00 0.00

2 1 3 4 0 0.33 0.10 0.38 0.50 0.00

1 4 2 1 0 0.17 0.40 0.25 0.13 0.00

0 4 2 2 0 0.00 0.40 0.25 0.25 0.00

0 0 1 1 2 0.00 0.00 0.13 0.13 1.00

F P

   
   
   
    
   
   
   
   

15 15

3 3

3 1 0 0 0 0.50 0.10 0.00 0.00 0.00

1 3 2 3 0 0.17 0.30 0.25 0.38 0.00

1 3 2 2 0 0.17 0.30 0.25 0.25 0.00

1 2 3 2 0 0.17 0.20 0.38 0.25 0.00

0 1 1 1 1 0.00 0.10 0.13 0.13 1.00

F P

   
   
   
    
   
   
   
   

 

 

The transition frequency matrix is individually related to 

the transition probability matrix for four other materials, and 

can be obtained by the same method. 

Then, the probability vectors of the five stable states of 

the materials are obtained by the frequency of corresponding 

states of the actual historical demand of each material, 

which is shown in Table 3. 
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.13889
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




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

 

Table 3 
 

Frequency of Each State of the Historical Sequence  
 

Material 1 
State 1 2 3 4 5 

Frequency 6 10 8 8 4 

Material 2 
State 1 2 3 4 5 

Frequency 2 6 10 13 5 

Material 3 
State 1 2 3 4 5 

Frequency 3 12 10 7 4 

Material 4 
State 1 2 3 4 5 

Frequency 3 11 11 6 5 

Material 5 
State 1 2 3 4 5 

Frequency 4 6 11 8 7 

Then, according to formula (7) shown above and still 

using material 1 as an example, we can obtain the 

corresponding weight 1

h

k  of the transition probability 

matrix 1k

hP  of material 1 through the following two sets of 

inequalities: 

The result is that 2

11 0.2  , 3

11 0.2  , 2

13 0.2  , 
3

13 0.2  , 2

15 0.2   and the others are 0. From this we can see 

that material 1 subjects to the third-order effect from  the 

five existing materials, where the first-order effect does not 
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exist, indicating that all material effects on material 1 are not 

immediately reflected; the second-order influence mainly 

comes from material 1 itself, and materials 3 and 5, which 

shows that the influences on material 1 coming from 

materials 1, 3 and 5 have a two-step lag; the third-order 

influence mainly comes from material 1 itself and material 

3, indicating that the influences to material 1 come from 

materials 1 and 3 with a three-step lag. 

Thus, the third-order Markov chain model of material 1 

can be obtained according to the weight calculated by 

formula (6), as shown in formula (10): 
 

1 11 1 11 1 13 3

1 2 1 3 2 2 1

13 3 15 5

3 2 3 2

0.2 0.2 0.2

0.2 0.2

t t t t

t t

X P X P X P X

P X P X

   

 

  

 
 (10) 

In the same way, we construct the Markov chains for 

the four other materials, and obtain their third-order Markov 

chain model, as follows: 
 

2 21 1 21 1 42 2

1 1 2 1 10.2 0.6 0.2t t t tX P X P X P X     (11) 

3 31 1 33 3 34 4

1 1 1 3 20.2 0.2 0.6t t t tX P X P X P X     (12) 

4 41 1 43 3 44 4

1 1 3 2 3 20.4 0.2 0.4t t t tX P X P X P X      (13) 

5 51 1 51 1 54 4

1 2 1 3 2 10.6 0.2 0.2t t t tX P X P X P X      (14) 
 

Then, the historical requirements of the first three 

months of each material are put into the formulas (10-14) to 

successively obtain the probability vectors of each material 

from month 4 to month 36. 

Next, in order to easily facilitate the process of steps 6 

to 9, we illustrate them with material 1 as an example. 

The probability of each state is assigned to the 

corresponding demand quantity, where the demand quantity 

of the same state averages the probability of the occurrence 

of the state. When t+1=5, the probability vectors for the 

states are (0.4594, 0.0715, 0.2164, 0.2345, 0.0182). Because 

only state 1 corresponds to demand 0, the probability of 0 is 

0.4594; because the probability of the occurrence of state 2 

is 0.0715, and because it contains 10 corresponding 

demands, the average probability of the occurrence of these 

10 demands corresponding to that state is 

0.0715/10=0.00715. Similarly, the average probability of the 

occurrence of eight other demands corresponding to state 3 

is 0.2164/8=0.02705; the average probability of the 

occurrence of eight other demands corresponding to state 4 

is 0.2345/8=0.02932; the average probability of the 

occurrence of four other demands corresponding to state 5 is 

0.0182/4=0.0045. In the same way, the probability of 

varying demand in other months can be obtained. 

After that, the occurrence probability of demand for 

each month is regarded as the weight to form a 33 - month 

demand sequence by randomly weighted sampling, and then 

this process is repeated 500 times to obtain 500 sequences. 

Next, formula (3) is used to calculate the accuracy r  of each 

requirement sequence, and then the sequence with the 

largest r  value is selected as the final demand sequence. 

This process of selecting the optimal demand sequence is 

repeated 10 times to obtain 10 sets of demand sequences, 

shown in Table 4.  

Combining the data sequence in Table 4 and historical 

data as the source data, the lead-time requirement is fit. 

Under the situation where the significance level is 0.1 and 

the lead-time is one month, the lead-time demand 

distribution obeys the normal distribution.  

As stated above, the lead-time demand distribution of 

the other four kinds of electric power supplies can also be 

obtained. The general situation is shown in Table 5. 

After determining the lead-time demand distribution of 

the power supplies, the safety inventory and reorder point can 

be analyzed to determine the inventory replenishment policy. 

Taking material 1 as an example, according to the 

continuous inspection strategy, the average value of monthly 

demand is 32R  , the standard deviation is 25R  , the 

lead-time is 1L  , and the cycle service level that should be 

satisfied is 90 %. 

Since the demand for the lead-time of these goods is 

within a normal distribution, the average demand for the 

lead-time is: 
 

1 32 32LR L R      

The lead-time demand standard deviation is: 

1 25 25L RL       

The safe inventory level is: 
1 1( ) (0.9) 25 32s L sss F CSL F       

The reorder point is: 
32 32 64LPOR ss R      

Table 4 

Reconstructed Demand Data 
 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Month 4 0 0 0 0 0 0 22 0 0 31 

Month 5 0 0 0 0 0 0 0 0 34 16 

Month 6 31 0 0 22 0 0 0 0 22 0 

Month 7 0 0 0 0 0 31 0 41 0 0 

Month 8 0 7 7 0 0 34 0 45 3 7 

Month 9 22 0 54 34 7 0 0 0 16 31 

Month 10 45 0 50 0 41 42 27 0 42 27 

Month 11 55 34 27 32 31 31 41 31 42 54 

Month 12 54 55 41 72 32 41 41 55 15 3 

Month 13 72 15 72 16 34 50 42 55 75 45 

Month 14 16 16 34 16 87 42 7 42 15 31 

Month 15 46 42 54 21 50 21 0 54 50 0 

Month 16 0 0 41 42 15 0 0 0 32 7 

Month 17 27 27 41 45 27 31 72 34 0 14 

Month 18 55 32 41 34 16 42 3 3 32 32 

Month 19 46 27 41 14 3 31 27 87 14 54 

Month 20 75 41 90 46 50 16 46 27 41 46 

Month 21 46 27 3 41 75 0 41 31 32 90 
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 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Month 22 27 16 75 15 16 55 55 55 7 42 

Month 23 32 32 50 27 55 41 32 27 90 75 

Month 24 27 21 14 32 54 46 45 15 72 0 

Month 25 31 27 31 32 72 32 32 50 22 0 

Month 26 50 45 54 75 22 3 16 3 14 15 

Month 27 19 72 19 31 7 31 22 19 14 19 

Month 28 75 27 54 45 19 32 34 21 32 0 

Month 29 7 0 50 50 45 42 3 27 0 34 

Month 30 21 42 21 54 21 7 34 21 32 42 

Month 31 0 31 19 19 54 42 42 0 42 54 

Month 32 31 34 55 34 0 0 0 34 0 0 

Month 33 72 54 0 90 31 41 19 32 16 27 

Month 34 31 21 32 15 32 54 16 75 31 7 

Month 35 90 50 27 22 87 42 72 46 72 72 

Month 36 75 31 90 19 72 34 72 46 87 15 

Table 5 
 

Reconstructed Demand Data 
 

Material Models 
Lead-time demand 

distribution 

500031139 

10kV cable terminations, 3 * 400, 

indoor terminals, prefabricated, 

Cuprum 

Normal 

distribution 

500021270 

10kV cable terminations, 3 * 120, 

indoor terminals, prefabricated, 

Cuprum 

Normal 
distribution 

500032513 
10kV cable terminations, 3 * 240, 
indoor terminals, prefabricated, 

Cuprum 

Gamma 

distribution 

500021283 
10kV cable terminations, 3 * 120, 
outdoor terminals, prefabricated, 

Cuprum 

Normal 

distribution 

500032519 

10kV cable terminations, 3 * 70, 

indoor terminals, prefabricated, 
Cuprum 

Normal 

distribution 

 

The warehouse shall always ensure that the inventory 

of  material 1 is at least 32 to ensure that the material 

inventory can meet the usage requirements in 90 % of 

cases. When the inventory of material 1 is as low as 64, the 

staff in charge shall make an order to the supplier. 

 
Conclusions 

 

Summary 

To address the problem that lead-time distribution is 

difficult to obtain because of limited historical data, this 

paper proposes a method that reconstructs historical 

demand data by using a multivariate high-order Markov 

chain to expand the sample size of the data, and then 

obtain the lead-time demand distribution. The first step in 

the reconstruction process is to set the multiple states and 

their corresponding quantity of demand according to the 

frequency of occurrence of historical demand and 

standardized demand data intervals. Secondly, the self-

correlation of the demand time series and the influence 

between each material are considered to construct multiple 

variable high-order Markov chain, which could obtain 

more accurate state probabilities to infer the result. In 

addition, when the state probabilities are determined, the 

demand quantity is not determined by the state of 

maximum probability; instead the random sampling with 

the probability of each state at each moment as the weight 

of the state is used to restructure the demand data which 

combine the lead-time information to fit the lead-time 

demand distribution. Through empirical research, this 

paper successfully fits the lead-time demand distribution to 

the power materials with only a small amount of historical 

data, and obtains the safety inventory and reorder point 

according to the distribution. This shows that the method 

proposed in this paper can effectively fit the lead-time 

demand distribution of less-historical-data materials and 

help enterprises to make reasonable inventory management 

decisions. 

Limitations 

The method proposed in this paper has two main 

limitations. Firstly, the final lead-time demand sequences 

for each repetition are not the same because this method 

adopts the weight-based random sampling after the 

demand sequence is finally determined, and sometimes the 

resulting sequences cannot fit the distribution. Therefore, 

the method should be repeated many times in order to 

ensure that the distribution of multiple fitting is stable and 

uniform. Secondly, in the process of data validation, some 

materials with a high frequency of zero demand cannot fit 

the data, even when a large amount of the data are 

reconstructed, so this method is only suitable for materials 

with a low proportion of zero demand, not for materials 

with limited historical data and a large quantity of zero 

demand. 

Outlook 

First of all, the lead-time demand distribution 

mentioned in this paper is based on a fixed lead-time. 

However, in practical application, the lead-time demand of 

many materials is not fixed, so the distribution cannot be 

obtained by busing the lead-time demand data which is 

simply summed after gaining the demand quantity. 

Therefore, in our follow-up study,  expand the scope of 

this method should be expanded. We could combine the 

multivariate high-order Markov chain proposed in this 

paper with an enlarged sample size of demand data to fit 

the distribution with an unfixed lead-time. In addition, 

because this method emphasizes matching the quantity 

demanded to the state directly and restructuring historical 

period requirement intervals is achieved by weighted 

random sampling according to the state probability of 

occurrence, the effectiveness of this method in practical 

application largely depends on setting appropriate status of 

each material demand. The setting of state directly 

influences the reliability of the final fitted distribution. 

This paper sets up specific standards to divide the states of  
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each material, which can be improved in future studies. A 

scientific criterion could be set to classify materials and 

divide their states, so that this method can be used for a 

large quantity of  materials, which is significant in 

enhancing its value in real business practice. 
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