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Solar radiation is among the renewable resources on which modern society relies to partially replace the existing fossil fuel-

based energy resources. Awareness of how the energy is produced must complement awareness of how it is consumed. In 

the economic context, the gains derive from predictability across the entire supply chain. This paper represents a 

compressive study on how standard recurrent neural networks, long short-term memory, and gated recurrent units can be 

used to forecast power production of photovoltaic (PV) systems. This approach can be used for other use cases in solar or 

even wind power prediction since it provides solid fundamentals for working with weather data and recurrent artificial 

neural networks, being the core of any smart grid management system. Few studies have explored how these models should 

be implemented, and even fewer have compared the outcomes of different model types. The data used consist of weather and 

power production data with a one-hour resolution. The data were further pre-processed to unveil the maximum information. 

The most effective model parameters were selected to make the forecast. Solar energy plays a key role among other 

renewable energy sources in the European Union’s climate action and the European Green Deal. Under these initiatives, 

important regulations are implemented and financial resources made available for those who possess the capabilities 

required to solve the open points. The much-needed predictability that gives the flexibility and robustness needed for 

deploying and adopting more renewable technologies can be ensured by utilizing a neural-based predictive approach. 

Keywords: Recurrent Neural Networks; Long Short-Term Memory; Gated Recurrent Unit; Renewable Energy; Photovoltaic 

Cells; Forecast; Smart Grids; Green Energy; Data-Driven Decision. 

 

Introduction  

Renewable energy has attracted considerable interest 

owing to its sustainability and potential abundance. In recent 

decades, photovoltaic (PV) cells have been installed 

globally, demonstrating that this solution could help in 

reducing the dependence on conventional polluting and 

limited energy resources. This solution began as niche 

technology before attaining a global reach. The stochastic 

nature of solar irradiance and meteorological conditions 

leads to discontinuity in solar power production, impeding 

smooth and continuous supply to customers. Intermittency 

and wide fluctuations in energy supply have a negative 

impact on the entire grid infrastructure. Finding the balance 

between supply and demand is above all a matter of 

forecasting energy production. Therefore, several problems 

that hinder the adoption of solar energy can be resolved 

through the development of predictive tools. Forecasting PV 

power output is key to successfully integrating PV-based 

renewable energy solutions into existing power grids. The 

scientific community is developing methods at the same 

pace at which the industry evolves. 

All technical aspects related to renewable energy 

forecasting must be further coupled with the economic 

implications. In addition to a continuous supply, the end 

user is ultimately seeking cheap energy, while the market 

players seek greater profits. First, an accurate forecast will 

help solar farm operations teams to manage the assets in 

sync with the grid (Wan et al., 2015) and develop a lean-

oriented production (Halldorsson et al., 2018). On the 

Transmission System Operator, a balance must be ensured 

in accordance with the produced and consumed energy 

(Gyalai-Korpos et al., 2020). In the case of solar energy or 

any other renewable energy resources for which volatility is 

present, the gap between supply and demand is filled using 

other energy resources or stored energy. Additional costs are 

generated each time this mechanism is activated (Gyalai-

Korpos et al., 2020). An accurate forecast of the energy to 

be produced leads to improved economic performance 

(Kraas et al., 2013) and the economic performance is 

inversely proportional with the error level (Granger & 

Pesaran, 1997). Moreover, the effects on the economic side 

are not caused only by the model performance but also by 

the way in which the production has been forecasted. 

Overestimation and underestimation have an asymmetric 

impact, and the model hyperparameter tuning must take the 

market conditions into consideration, as even this decision 

might create a bias (Botterud et al., 2012). For energy 

dispatching, cost-oriented strategies that have energy 

production and consumption forecast at their core are also 

applied (Hanna et al., 2014; Lee et al., 2019; 164). 
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A performant model must be able to forecast a wide range 

of power outputs during short periods of time due to the day-

night cycle, weather conditions, and solar elevation angle. It 

is still necessary to prototype and prove to customers that 

sufficiently flexible solutions are available to accommodate 

performant predictive analytics regardless of the technology, 

scale, geographical position, or other measurable factors. 

Optimal management of renewable power systems will make 

these technologies more profitable and efficient. In the last 

170 years, energy demand has been on an ascending path, 

increasing by approximately 2.5 % per year (Jarvis et al., 

2012). By the end of 2050, it is projected that the increase in 

energy demand compared with 2018 will be close to 50 % 

(Kahan, 2019). Existing non-renewable technologies have 

been provided since the Industrial Revolution, given the need 

for considerable amounts of energy.  

Two main issues emerge in relation to the existing 

system: negative environmental impact and resource 

depletion. Pollution and global warming, nuclear accidents, 

and the gap in recycling radioactive residuals—all in the 

context of new renewable technologies that are more 

reliable and effective than ever—offer a viable option to 

shift the paradigm toward a green and sustainable energy 

ecosystem. Economic performance and safe operation 

depend on the accuracy of the consumption forecast 

(Uniejewski et al., 2019). Over the next 10 years, the 

European Commission aims to reduce greenhouse gas 

emissions by at least 40 % (from 1990 levels) to achieve at 

least a 32 % share of renewable energy and at least a 32.5 % 

improvement in energy efficiency (European Parliament, 

2018). Taking into consideration the ongoing electrification 

process, the consumption pattern is likely to generate peaks 

in demand in the evening or at night. This reinforces the 

need to adopt the appropriate strategy for energy storage. In 

this context, the PV power output forecast becomes very 

important. With the same approach, but for a different 

purpose, the energy production forecast can be used to 

engage in energy trading (Carriere & Kariniotakis, 2019). 

The implementation of a forecasting system can reduce 

uncertainty over the energy price, leading to economic 

benefits (Alessandrini et al., 2014; Barthelmie et al., 2008; 

Kraas et al., 2013). 

Placing this article in a European and strategic context, 

according to SolarPower Europe, solar energy is generally 

cheaper than any other type of energy that we are capable of 

producing nowadays, and it is predicted to show the steepest 

cost reduction curve in the coming years (SolarPower Europe, 

2019). In its Clean Energy for All Europeans Package and 

energy policy framework, the European Union encourages 

the use of solar-related energy production technologies 

through governance regulations and modernization of 

Europe’s electricity market for greater flexibility with the aim 

of integrating a greater share of renewable energy. Currently, 

solar energy prices average from 0.03 EUR per kWh in 

Southern Europe to 0.05 EUR per kWh in Northern Euro and 

are expected to drop to 0.01 EUR per kWh by 2050. To 

achieve the clean energy goals, including the reduction of 

solar energy costs, the European Investment Bank has 

committed to finance clean energy innovation, renewable 

energy, and energy efficiency with up to EUR 1 billion over 

the next decade (SolarPower Europe, 2019). The present 

research has the potential to solve open points in any of the 

three main interest areas identified.  The aim is to propose a 

comprehensive solution that is ready to be deployed and that 

will increase the level of predictability, at least at production 

sites. There currently exists a gap in the literature dealing with 

solar energy forecasting through the implementation of 

recurrent neural-based solutions. This gap also includes the 

ways in the selected models are presented, and this is also 

addressed in the present paper. The sections that follow will 

focus on the theoretical and experimental considerations 

leading to a performant forecast. 

Literature Review  

PV power output forecasting models can be categorized 

based on their type (physical, statistical, machine learning, 

or hybrid) or time horizon (short-term, medium-term, or 

long-term). Physical models can deliver good accuracy if 

two conditions are respected: accurate weather data and 

deep understanding of the solar power installation to 

calculate the output based on the power curves. Statistical 

and machine learning models map the relationship between 

input and output variables without probing the profound 

details of how solar irradiance is transformed into electrical 

energy. In other words, the physical models’ complexity and 

lack of flexibility can be eliminated. However, accurate 

weather data are still required. The hybrid approach 

combines the main categories listed before. Short-term 

forecasting can last from minutes to maximum days. 

Medium- and long-term forecasting are addressed more for 

strategic decisions, maintenance, and the need to develop 

and construct new infrastructure to fulfill power demands.  

Artificial neural networks (ANNs) are machine learning-

based models that can address non-linear problems, such as 

solar energy forecasts. Recurrent neural networks (RNNs) 

are part of the learning networks that are suited to handling 

sequential data, such as time series or textual data. In this 

study, multivariate data and RNNs are used to forecast PV 

power output. Three types of RNN model were compared 

according to the same scope, under the same assumptions, 

and with the same data: standard recurrent neural networks 

(SRNN), long short-term memory (LSTM) neural networks, 

and gated recurrent units neural networks (GRU). 

Considering the dependence on weather parameters and the 

fact that weather forecasting remains an open topic, PV 

power output forecast has become a particularly complex 

problem. The compromise in this case is to reduce the 

forecast horizon to days or even hours for more accurate 

results. Forecasting weather in this research is out of scope, 

with weather data already available. ANNs are recognized 

as universal approximators that are able to find hidden 

patterns in the data. Even ANN, by its structure, can deal 

with noisy data; at some point, the noise and redundancies 

in data must be removed (Zhang et al., 2018). De et al. 

(2018) performed various optimization scenarios to better 

understand the behavior of the model under the influence of 

shifting data set division, number of hidden nodes, number 

of input variables, or activation function. Adding more 

variables that seemed to impact PV power output did not 

add value in terms of model performance. Moreover, 

common sense leads to the conclusion that the higher the 

dimensionality, the more resources are needed for training. 

Another study proposed that univariate time series 
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forecasting highlights the superiority of the RNN over 

backpropagation neural networks, radial basis neural 

networks, support vector machine, and the persistence 

method (Li et al., 2019). The same univariate approach has 

been tested for short-term forecasts in which LSTM 

outperformed the moving average (Poudel & Jang, 2017). 

The performance of hybrid models-including auto-

regressive integrated moving average coupled with support 

vector machine (Bouzerdoum et al., 2013) or auto-

regressive model coupled with auto-regressive with 

exogenous input model in a time-step approach (Bacher et 

al., 2009) -was reasonable for short-term forecasting results 

but not comparable with the results obtained using machine 

learning-based models. In the physical methods category, 

one interesting approach involves the use of satellites to 

monitor cloud movement and use it as input into solar 

radiation forecasting models (Hammer et al., 1999; Lorenz 

et al., 2009). However, although ANN and sky imaging 

methods can deliver excellent performance (Crisosto et al., 

2018), the overall cost is increased by deploying and 

operating expensive equipment, adding further complexity 

by working with images. Feed-forward neural networks 

(FFNNs) that are not designed for use with sequential data 

and are not as performant as RNN can deliver reasonable 

performance (Yona et al., 2007; Gao et al., 2019). Another 

potential approach is to use the radiation classification 

coordinate method to find and select similar sub-time series 

that are further used as input in learning networks-based 

models where LSTM was proven to perform better than 

backpropagation neural network, radial basis neural 

network, and Elman neural network (Chen et al., 2020). A 

similar thought process can be applied to the weather data 

to categorize it into four main categories (rainy, cloudy, 

overcast, and sunny-ideal state), resulting in four different 

performance levels for four different scenarios (Lee & Kim, 

2019). In the long-term forecast, LSTM can outperform 

multiple linear regression, bagged regression tree, and 

FFNNs (Abdel-Nasser & Mahmoud, 2017). RNN models 

exhibit better performance than statistical, physical, and 

even hybrid models. Statistical models are unable to capture 

all phenomena relating to solar power production, and 

physical models are too rigid and complex to resolve issues 

under the continuous uncertainty of weather data. Currently, 

in the literature on solar energy forecasting, the use of 

recurrent neural-based models is a gap. The most important 

recurrent neural-based models will also be examined in 

depth, as these will shape the models for a solar energy 

forecast use case. 

Theoretical Fundamentals  

An RNN is a type of neural network built to handle 

sequential data, such as time series, wherein a time step is 

predicted with respect to the previous time steps (Figure 1). 

Hidden layers store the information of the previous time 

steps, making it available as input when a new state is 

predicted. SRNN can be defined using the following 

equations (Pascanu et al., 2014):  

ht = fh(xt, ht−1) = ϕh(𝐖Tht−1 + 𝐔Txt) (1) 

yt = fo(ht, xt) = ϕo(𝐕Tht) (2) 

where 𝑓ℎ, 𝑓𝑜 are state transition function and output 

function, further represented by element-wise non-linear 

functions, 𝑾, 𝑼, and 𝑽, representing transition, input, and 

output matrices. Transition matrices are also known as 

recurrent weights matrices. The current state, 𝑡, is a function 

of the current input and previous state. The current state 

output 𝑦𝑡  is a function of output synaptic weights and hidden 

vector ℎ𝑡 

 

Figure 1. Standard RNN Cell 

 

Network parameters can be estimated with gradient-

descent-based algorithms, making the computations by 

backpropagation through time (BPTT) (Rumelhart et al., 

1986). BPTT, used for the RNN, is similar to the 

backpropagation of the FFNNs. For the RNN, the BPTT 

occurs from the current cell state back to the initial cell state. 

The gradient is calculated with respect to each individual 

time step. Since the weights are identical for all cells, the 

resulting gradients must be summed at the end. One of the 

main weaknesses of this design is represented by the 

vanishing or exploding gradient (Bengio et al., 1994). The 

problem occurs for the synaptic weight that connects the 

hidden layers: if the weight value is small, it causes a 

vanishing gradient. If the weight is large, it causes an 

exploding gradient. After multiplication operations, the 

gradient value, based on the weight’s initial values, will 

become extremely small or large. For a lower gradient, the 

training time increases, and the weights update becomes 

harder as the change in the weights becomes insignificant. 

At the same time, the low gradient may cause the initial 

considered time steps to be improperly trained while the 

final time steps may have been trained well. However, not 

even their training cannot be considered to have been done 

well, since the input is coming from upstream. Another main 

weakness of the standard recurrent neural network is 

associated with the fact that in the case of applications 

where information of multiple earlier steps is needed, it fails 

to keep the correct long-term context data (i.e., important 
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information that happens to be at time step 2 may be lost 

until step 20-the final step-has been reached). This is called 

information morphing. 

A new type of RNN incorporates three gates: the input, 

forget, and output gates (Figure 2). These three gates are 

represented by sigmoid-activated neural networks that 

bound the output between 0 and 1. The two interval ends 

mean that all the information is blocked when the value is 0 

or that all the information is allowed when the value is 1. By 

convention, the different memory blocks that constitute the 

LSTM network are called cells. In the current state (denoted 

further by time step 𝑡), information from the previous cell 

(𝑡 − 1) is used-cell state and hidden state. The forget gate’s 

task is to remove unnecessary information sent by the 

previous cell. This is described in (3), where 𝑊 and 𝑈 are 

the weights matrix of the previous cell hidden state 

(recurrent connection) and the weights matrix of the input 

of the current state (current hidden layer), respectively. 

 

 

 

ft = σ(xtU
f + ht−1Wf) (3) 

it = σ(xtU
i + ht−1Wi) (4) 

Ct̂ = tanh(xtUg + ht−1Wg) (5) 

Ct = σ(ft ∙ Ct−1 + it ∙ Ct̂) (6) 

ot = σ(xtU
o + ht−1Wo) (7) 

ht = tanh(Ct) ∙ 𝑜t (8) 

For all three gates, the sigmoid function is used to 

decide which information is to be kept and which 

information is to be discarded. Through the input gate, the 

information is added to the cell state. By employing the 

same sigmoid-activated neural network (4), only the 

information that needs to be added to the cell state 𝐶 is 

retained. Equation (5) creates a new vector of values that 

could be part of the state, 𝐶�̂�. Current state, 𝐶𝑡, (6), depends 

on the information to be added via input gate and the 

information to be retained after passing the forget gate. 

Output gate (7) controls the information that leaves the 

LSTM cell (8); similarly, the forget gate and input gate 

 

 

Figure 2. Long Short-Term Memory Cell 

 

Gated recurrent unit (GRU) (Cho et al., 2014), like 

LSTM, aims to solve the vanishing gradient problem 

encountered while using SRNN (Figure 3). Its structure 

allows long-term dependencies to be captured from long 

sequences of data, retaining information from earlier stages. 

Compared with LSTM, GRU does not pass two different 

states between the cells; rather than cell state and hidden 

state, GRU passes only the hidden state. Owing to its design, 

GRU can keep both short-term and long-term dependencies 

through a similar gating mechanism, which regulates the 

flow of information but with two gates instead of three—the 

update gate and the reset gate.

 

Figure 3. Gated Recurrent Unit Cell 

 

zt = σ(xtU
z + ht−1Wz) (9) 

rt = σ(xtU
r + ht−1Wr) (10) 

ht̂ = tanh(xtU
ĥ + (ht−1 ∙ rt)Wĥ) (11) 

ht = (1 − zt) ∙  ht−1 + zt ∙ ht̂ (12) 

Where " ∙ " represents element-wise multiplication. 

Update gate (9) acts similarly to LSTM’s input gate, 

deciding how much of the previous state information to 

keep. Multiplying the input and the hidden state with their 

associated synaptic weights and then summing and passing 

the result through the sigmoid function will bound the 

values between 0 and 1. This type of logic provides the 
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capability to filter the relevant data. Reset gate (10) is 

analogous to the LSTM’s forget gate and input gate, 

determining how much of the past knowledge to forget. The 

same formula is used for the update gate and reset gate 

vectors, but the weights vector, which is trainable, is 

different at the end. A sigmoid activation function is applied 

to the input 𝑥𝑡 and previous hidden state ℎ𝑡−1. If the values 

are close or equal to 1, then all the information coming from 

the previous state is relevant. Current memory content (11) 

is responsible for introducing non-linearity into the input 

and transforming it into a zero-mean. If the reset gate is 

equal to 0, then the previous hidden state information is 

filtered out, with only the current input, 𝑥𝑡 , remaining. 

Finally, the vector ℎ𝑡 (12) containing the information of the 

current state that will be passed to the next state t+1 is 

calculated. The information passed to the next state is a 

combination of both the current and the previous states. 

Owing to its design, containing fewer parameters than 

LSTM, GRU is more computationally efficient. 

Method and Design  

A key aspect of any data mining project is the selection 

of a data mining framework. In this way, the team members 

working on the project and the stakeholders have the 

appropriate levels of control and visibility. The cross-

industry standard process for data mining (CRISP-DM) is 

one of these standards that are widely distributed across 

various industries. In this study, an instance of this standard 

proposed by IBM was used (IBM, 2015). The reason this 

standard was selected is that IBM made the support 

document based on their previous experience, being at the 

same time a living document (Figure 4). 

 
 

Figure 4. CRISP-DM Phases 
 

The six-phase standard consists of business 

understanding, data understanding, data preparation, 

modeling, evaluation, and deployment. The feedback 

between different phases ensures that the outcome aligns 

with expectations and the availability of resources. CRISP-

DM’s first two phases-business understanding and data 

understanding-are crucial in determining whether the data 

mining project’s scope can be fulfilled using existing data 

and business understanding. Nevertheless, the probability of 

encountering blocking points during the other four phases 

remains. The data used for this study were made available 

by Open Power System Data (OPSD, 2020). OPSD is a data 

platform dedicated to electricity system research. The data 

are collected, checked, processed, and published free of 

charge. OPSD’s goal is to avoid redundant work and to 

improve data quality with the aim of supporting researchers 

in their work. The initial raw data came from two different 

data sets. The first data set contains data relating to solar 

energy production while the second contains weather data. 

In the weather data set, the following variables were 

available: timestamp, v1 = wind speed measured at height 

h1; v2 = wind speed measured at height h2; v_50m = wind 

speed measured 50 meters above ground; h0 = roughness 

length; SWTDN = total top-of-the-atmosphere horizontal 

radiation; SWGDN = total ground horizontal radiation; T = 

temperature 2 meters above ground; rho = air density at 

surface; p = air pressure at surface 

Table 1 

Correlation Matrix 

CM v1 v2 v_50m h1 h2 z0 SWTDN SWGDN T rho p 

v1 1 0.99 0.90 0.37 0.37 0.38 0.20 0.15 0.17 0.15 0.23 

v2 0.99 1 0.95 0.38 0.38 0.39 0.11 0.06 0.20 0.16 0.24 

v_50m 0.90 0.95 1 0.40 0.40 0.40 0.16 0.18 0.27 0.18 0.24 

h1 0.37 0.38 0.40 1 1 1 0.27 0.28 0.79 0.71 0.17 

h2 0.37 0.38 0.40 1 1 1 0.27 0.28 0.79 0.71 0.17 

z0 0.38 0.39 0.40 1 1 1 0.27 0.29 0.79 0.72 0.16 

SWTDN 0.20 0.11 0.16 0.27 0.27 0.27 1 0.97 0.54 0.41 0.03 

SWGDN 0.15 0.06 0.18 0.28 0.28 0.29 0.97 1 0.56 0.41 0.03 

T 0.17 0.20 0.27 0.79 0.79 0.79 0.54 0.56 1 0.94 0.01 

rho 0.15 0.16 0.18 0.71 0.71 0.72 0.41 0.41 0.94 1 0.29 

p 0.23 0.24 0.24 0.17 0.17 0.16 0.03 0.03 0.01 0.29 1 

 

During the data understanding step, as anticipated, a 

strong correlation was observed between several variables 

(Table 1). In the case of correlated variables, those with a 

correlation coefficient higher than 0.9 were removed. The 

timestamp has a standard YYYY-MM-DDTHH:MM:SSZ 

format, from which information relating to year, month, 

day, hour, minute, and second can be extracted. Since the 

timestamp is created on an hourly basis, this is the maximum 

level of discretization. Categorical variables such as month, 

day, and hour were encoded. 
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Figure 5. Total Top-of-the-Atmosphere Horizontal Radiation [W/𝑚2]  

 

 

Figure 6. Total Ground Horizontal Radiation [W/𝑚2]  

 

 

Figure 7. Air Temperature [C]  

 

 

Figure 8. Air Pressure [Pa]  
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Figure 9. Wind Speed [m/s]  

 

Figures 5 to 9 present a visualization of the main 

features used in the model. The source of the energy 

production volatility is clear, since the weather data 

impacting the output vary over time. The top-of-the-

atmosphere horizontal radiation peaks in the summer, with 

values up to three times greater than those in winter. The 

ground horizontal radiation has peaks in the summer, but the 

amplitude is up to nine times greater than in the winter. This 

insight is important in that it is expected to show volatility 

across a 24-hour cycle but is less straightforward on a yearly 

cycle. Air pressure (Figure 8) and wind speed (Figure 9) do 

not show seasonality.  Most of the study time was spent on 

data quality and quantity assessment, variable selection, and 

feature engineering. At the end of CRISP-DM’s data 

preparation step, 72 independent variables were considered 

for modeling. Prior to starting the modeling phase, the 

metrics used for model evaluation had to be decided. Root 

mean squared error (RMSE) and mean absolute error 

(MAE) facilitate the comparison of different models built 

on the same data set, both being measures of the accuracy 

of the forecast and scale-dependent. Coefficient of 

determination (𝑅2) is a measure of the variance in the 

dependent variable explained by the model. 

 

RMSE = √
1

n
∑(yi − ŷi)

2

n

i=1

 

 

(13) 

MAE =
1

n
∑|yi − ŷi|

n

i=1

 
(14) 

R2 = 1 −
∑ (yi − ŷi)

n
i=1

∑ (yi − ŷi)
n
i=1

2 
(15) 

 

Results 

 

Returning to the scope of this research, SRNN, LSTM, 

and GRU capabilities were assessed to determine which is 

more suited to the proposed use case (Table 2). The initial 

data set was divided into two sub-sets: a training data sub-

set, representing 90 % of the initial data set, and a holdout 

data sub-set, representing the remaining 10 %. After several 

tests, the baseline was set. 

Table 2 

LSTM, GRU, and SRNN Baseline 

Model Parameters RMSE MAE R2 

SRNN_1 hl=2, nn=144, e=150, opt=Adam, batch=2048, wi=Xavier uniform, lr=0.001 453.2 276.3 0.9643 

LSTM_1 hl=2, nn=144, e=50, opt=Adam, batch=2048, wi=Xavier uniform, lr=0.001 931.6 481.8 0.8490 

GRU_1 hl=2, nn=144, e=100, opt= Adam, batch=2048, wi=Xavier uniform, lr=0.001 393.5 270.1 0.9731 

Note: hl = number of hidden layers; nn = number of neurons on each hidden layer; e = number of epochs; opt = optimization algorithm, wi = weights 

initialization; lr = learning rate.  
 

The third layer of neurons was added during the initial 

tests for all three main models, but no improvement in the 

forecast capability was observed. The same assessment was 

performed for the number of neurons on the hidden layers. 

Neither fewer nor more neurons on the hidden layers was 

associated with improvement. Moreover, it is known that 

increasing the network dimension will lead to an increase in 

the resources spent on training. 

The next step in the search for the optimal 

hyperparameter combination was to determine the mini-

batch size. For a smaller mini-batch size, LSTM showed an 

increase in R2 from 0.8490 to 0.9244, while GRU showed 

an increase from 0.9731 to 0.9826. No significant increase 

was noted for the SRNN model. Initially, the Adam 

optimizer was used. To understand the impact of the 

optimizer in the model’s generalization performance, 

Adagrad (Lydia & Francis, 2019) and RMSProp (Hinton et 

al., n.d.) were tested. RMSProp did not enhance any of the 

models’ performances, while Adagrad enhanced LSTM’s 

and GRU’s performances. Xavier uniform (Glorot & 

Bengio, 2010) remains the best method for weight 

initialization. 
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Table 3 

LSTM, GRU, and SRNN after Optimizer, Weight Initialization, and Batch Optimization 

Model Parameters RMSE MAE R2 

LSTM_2 hl=2, nn=144, e=50, opt= Adagrad, batch=128, wi=Xavier uniform, lr=0.001 396.3 222.9 0.9727 

GRU_2 hl=2, nn=144, e=100, opt= Adagrad, batch=512, wi=Xavier uniform, lr=0.001 289.7 151.7 0.9854 

SRNN_2 hl=2, nn=144, e=150, opt=Adam, batch=1024, wi=Xavier uniform, lr=0.001 450.1 275.2 0.9648 
 

 

Figure 10. Learning Curves of LSTM, GRU and SRNN  

 
Generally, learning curves represent a plot showing 

learning improvement over time (Figure 10). The dotted line 

represents the training learning curve, and the continuous 

line represents the validation learning curve: the smaller the 

loss, the better the forecast. The training learning curve 

evaluates how well the model generalizes the training data 

set, while the validation curve provides information about 

the generalization capability over holdout data set. 

Lowering the learning rate of the LSTM models has no 

impact on smoothing the learning curves. Both LSTM and 

SRNN learning curves show signs of possible overfitting or 

underfitting. However, although these two unwanted 

behaviours may be present, the models’ overall 

performances are good. GRU not only performs better than 

LSTM and SRNN, but also has the smoothest learning 

curves and an almost equal capability for generalization 

over both training and holdout data, leading to the 

conclusion that is the best model for this use case. The first 

two days of production in the holdout data set were selected 

for visualization purposes (Figure 11). All three models 

have good forecast capabilities, and the predicted values are 

in sync with the actual values. 

 

 

Figure 11. Solar Energy Forecast in the First 48 Hours [W]  
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In addition to the metrics mentioned above for the final 

model configurations, training time was analyzed. All 

models were run on a Dell Precision 7350 laptop equipped 

with 2.5 GHz Intel Core i5-8400H CPU, Nvidia Quadro 

P2000, 32 GB RAM, Windows 10, and Python 3.6.10. 

 

 

Figure 12. R2 and Ttraining Time Comparison 

 

As of now, the training time was a matter of selected 

architecture and number of epochs. In terms of time per 

epoch, LSTM requires 19 seconds, GRU requires 10 seconds, 

and SRNN requires just 4 seconds. This was expected and is 

in line with RNN fundamentals. Owing to the different 

number of epochs needed for training, GRU’s training time is 

the largest while SRNN’s is the smallest. Although the R2 

values are close, RMSE and MAE values show that the 

differences in terms of absolute values are important. For 

example, SRNN’s MAE is 80 % larger than GRU’s MAE, 

and LSTM’s MAE is 46 % larger than the same GRU’s MAE. 

Considering a pragmatic approach where training time is not 

a constraint, GRU is the best option for this use case. The 

parameters that added no improvement to the performance 

were not considered in the final discussion. 

Conclusions 

This paper proposed three different RNN types for PV 

energy production forecasts. Finally, the most powerful 

model of each considered model type has been fully 

described. SRNN, LSTM, and GRU were assessed in terms 

of complexity, performance, and training time. The baseline 

models proved from the beginning that these three 

architectures can provide reasonable performance. After 

hyperparameter tuning, both LSTM’s and GRU’s 

performances were improved, while SRNN’s performance 

remained the same. Accurate forecasting of energy 

production is among the key open points that need to be 

resolved to promote solar energy adoption. Moreover, 

obtaining close forecast performances for all three models 

is a means of validating that the results are meaningful 

rather than a fortunate coincidence. The proposed GRU 

architecture can model complex phenomena, such as solar 

energy production. Long-term dependencies were captured 

through the simple yet sophisticated gating system. The use 

of real-world data ensures that this study’s findings can be 

directly applied to installations in production, showing the 

starting point of the optimization and beyond to ensure the 

best result. Several intermediate steps remain to be taken 

before the final state can be reached. Renewable energy 

production systems must become integrated into existing 

energy production and transport systems. Owing to its 

unpredictable nature, wind energy cannot adequately fulfill 

end users’ demands. Concerns relating to renewable energy 

in general and solar energy in particular will intensify in the 

coming years, at least in the European Union context. The 

progress made worldwide is transforming this into a global 

initiative, despite the fact that the efforts have been made in 

different workstreams. The European Green Deal creates 

opportunities for proposing, financing, and implementing 

courageous innovations for the common good on both the 

environmental and economic levels. It is clear that 

predictability leads to optimization and optimization leads 

to cost reduction. The cost reduction is made initially where 

the energy is produced but is further propagated 

downstream to the customer, with all parties involved taking 

advantage of it. Another particularly salient aspect is the 

rapid decrease in production costs, which will drive the 

increase in the installed capacity, owing to its attractiveness 

to business developers. The key to integrating this and other 

green technologies together with classical technologies is to 

put in place a predictive system: by anticipating when the 

gaps in energy delivery will appear, a proactive approach on 

the part of production and distribution companies will lead 

them to take the necessary actions to fill such gaps using 

classical energy resources. By integrating a larger share of 

cheap energy, the price for the end customer will be reduced 

proportionally with the share. However, several limitations 

and unresolved issues must be considered in real-world 

scenarios. First, the model’s performance relies on the input 

data, namely, weather data, which already include a degree 

of uncertainty. This uncertainty is further propagated into 

the model, thereby impacting the performance. Second, 

equipment wear is not considered in the current setup. After 

deployment, the performance of assets will deteriorate along 
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with the capability of converting solar irradiance into 

electricity. Third, no fully end-to-end implementation 

accounts have been published, and so unexpected 

challenges may yet emerge.
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