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Value at Risk (VaR) is a widely used measure of market risk. Precision in the estimation of volatility leads to accurate VaR 

forecasts. As volatility is time-varying and has a clustering effect, GARCH class of volatility models is helpful in modeling 

volatility more precisely. Studies have also shown that range-based volatility estimates are more efficient than traditional 

models that use only closing prices. Therefore, this study uses the GARCH family of volatility models to model and forecast 

VaR. The study compares conventional models that use closing prices alone, like GARCH and TARCH, with range-based 

models like RGARCH and RTARCH models, where the range defined as daily high price minus low price is introduced as 

an exogenous variable, to explore if the latter provides better predictive accuracy. All the models are back-tested using the 

Kupiec (1995) unconditional coverage and Christoffersen (1998) conditional coverage tests. The data period in the study 

ranges from 2003–2021, and we consider five BRICS indices and three major developed economies, namely, the USA, the 

UK, and Germany. An empirical investigation shows that range-based models do a better job in VaR forecasting as it has 

more information content than daily closing prices, thereby giving more accurate VaR estimates. The study hopes this finding 

will greatly help stakeholders like financial institutions, regulators, and practitioners in more effective market risk 

management.  
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Introduction 

With the advent of more complexity and openness to the 

financial markets, the need to have efficient risk 

management tools and techniques has become imperative. 

One of the most commonly used measures for risk 

management to mitigate market risk by financial 

institutions, portfolio managers, traders, etc., is Value at 

Risk (VaR). Risk or uncertainty due to the dynamic and 

volatile nature of asset price movements leads to market 

risk. Since it can cause potentially substantial monetary 

losses to the parties involved, mitigating the same becomes 

essential (Jorion, 2007). 

VaR estimates the maximum possible loss an asset or a 

portfolio can lose within a time horizon at a given 

confidence level. However, estimating VaR is challenging, 

as it is difficult to determine the asset returns' quantile or 

even the time-varying characteristics. Therefore, adopting 

suitable assumptions and specifications is required to help 

one accurately compute VaR estimates (Jorion, 2007; Engle 

& Manganelli, 2004).  

One of the essential aspects of VaR estimation is 

volatility estimation and modeling. Volatility modeling still 

assumes a significant role in finance research. This becomes 

more intriguing and challenging because volatility is not 

constant over time. Further, the conditional nature of 

volatility, volatility clustering, and leverage effects make 

this exercise quite complex. Engle (1982) developed the 

Autoregressive Conditionally Heteroscedastic (ARCH) 

model for modeling conditional volatility. This was later 

extended by Bollerslev (1986) as the Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) 

model. Later studies developed these volatility models to 

predict the time-varying conditional variance of a price 

series by incorporating the past unpredictable changes in the 

returns of that price series (Nelson, 1991; Bollerslev et al., 

1992;  Engle & Patton, 2001; Shin, 2005; Alberg & Shalit, 

2008; Shamiri & Isa, 2009; Kalu, 2010). Until Parkinson 

(1980); Garman & Klass (1980); Ball & Torous (1984); 

Alizadeh et al., (2002); Brandt & Jones (2006), most 

volatility modeling studies used only daily closing prices of 

asset returns for volatility estimation. 

Further studies have shown that volatility and co-

movement estimators based on extreme values tend to be 

more efficient, which helps in more accurate volatility 

modeling (Shaik & Maheswaran, 2019; Shaik & 

Maheswaran, 2018; Shaik & Maheswaran, 2016;  

Padmakumari & Maheswaran, 2017). Some studies have 

also extended the applicability of such extreme values in 

volatility estimation to the distributional properties of asset 

returns, which is vital in precise volatility modeling (Shaik, 

& Maheswaran, 2020). These proved that one could come 

up with more efficient estimators of volatility based on high-

low prices, also called range-based volatility estimators. 

This becomes more helpful as one may not always have 

access to high-frequency intraday data. Further, these 
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studies also documented that these daily price range data 

encompassed all the information about the market as 

compared to closing price data alone. Additionally, these 

extreme prices are readily available, economical, and easier 

to handle.  

Therefore, since accurate volatility prediction is of 

prime importance when estimating VaR estimates, studies 

have tried to use volatility models to estimate and model 

VaR. The most commonly used volatility model is GARCH 

(Huang et al., 2015; Nieto & Ruiz, 2016). This exercise 

becomes even more attractive because volatility varies over 

time with volatility clustering and leverage effects. Some of 

these above studies considered GARCH-based VaR 

measures to follow a normal distribution derived from a 

Brownian motion. However, empirical evidence suggests 

that this distributional assumption fails to account for price 

shocks' frequency and true impact, leading to undermining 

risk. Further, research also showed that using range-based 

price data to model VaR specifications proved more 

efficient. (A detailed literature review of the same is given 

in the next section). 

Therefore, under this backdrop, the authors are 

interested in modeling and predicting Value at Risk (VaR) 

utilizing the GARCH family of volatility models. The study 

compares and contrasts by incorporating closing prices and 

range-based price data to understand if the latter performs 

similarly to the closing prices. Therefore, the study models 

VaR are based on traditional volatility models that use 

closing price data alone, namely GARCH & TARCH 

models. Next, range-based volatility models like range-

based GARCH and Range-based TARCH are used by 

incorporating range as an exogenous variable into the 

traditional GARCH and TARCH models to identify if range 

provides additional predictive capacity. Finally, all the 

models are back-tested using various statistical measures 

like Kupiec (1995) unconditional coverage test and 

Christoffersen (1998) conditional coverage test to determine 

the different models' statistical accuracy in capturing risks. 

The study also wants to investigate if there is a difference in 

the forecasting ability of these models in an emerging 

economy vs. a developed economy. This is important as 

geographic diversification of assets is imperative to mitigate 

portfolio risk exposure. Hence, a comparison between the 

performance of the VaR models across developing and 

developed economies will provide valuable insights. 

Therefore, the sample consists of BRICS economies, 

namely, Brazil (IBOVESPA), Russia (MOEX), India 

(Nifty50), China (Shanghai), and South Africa indices, 

respectively as well as the indices of the three major 

developed economies, namely, the USA (S&P), the UK 

(UXX) and Germany (DAX) indices respectively for the 

period January 2003 - October 2021. Daily data comprising 

last, high, and low prices are used in the analysis. 

The rest of the paper is organized as follows. Section 2 

details the relevant literature on VaR estimation based on 

various volatility models. Section 3 presents the theory of 

volatility models and the econometric methodology adopted 

for fitting the different volatility models. Section 4 provides 

the details on the data used as well as discusses the empirical 

results. Section 5 presents the VaR back-testing procedure 

adopted based on the volatility models and the observed 

effects. Section 6 concludes with a summary of the main 

findings of the study. 

Literature Review  

In this section, a bird's eye view of the research in VaR 

under various volatility modeling specifications is provided 

A plethora of research has tried to compare and contrast 

the VaR forecasting performance of GARCH class models. 

A study by Huang et al., (2015) on MSCI World Index data 

showed that ARMA (1,1)-GARCHM (1,1) outperforms in 

terms of violation measures. Interestingly, a study by Nieto 

& Ruiz (2016) showed that the out-of-sample observation 

and the time horizon influence the forecasting outputs. 

Hence, only the asymmetric model like EGARCH assuming 

skewed Student's t-distribution seemed to fare relatively 

well. The impact of distributional assumption on forecasting 

accuracy was also documented by other researchers (Tabasi 

et al., 2019; Altun, 2019). These studies showed that 

assuming a t-student distribution function instead of the 

Normal distribution function led to better forecasting 

accuracy and a lesser violation ratio. Okpara (2015), based 

on a study of the Nigerian market, reported that the 

EGARCH model with student t- innovation distribution led 

to better VaR forecasts. 

Persistence or long memory also determines a model's 

VaR predictive ability. A study on the gold return volatility 

demonstrated that FIGARCH, which incorporated a long 

memory process, outperforms other models (Bentes, 2015; 

Huang et al., 2016). Similar findings were documented by 

Emenogu et al., (2018); Slim et al., (2017). These studies 

also showed that accounting for asymmetry is equally 

essential, especially while studying emerging economies. 

These studies showed that while FIGARCH outperformed, 

traditional asymmetrical models like GJR GARCH worked 

best in emerging economies. Contradicting results were 

demonstrated by Degiannakis et. al., (2013) based on a 

study of major stock indices. The author showed that 

accounting for asymmetry need not always lead to superior 

forecasts. 

Another study considered the forecasting performance 

of these VaR models over various time horizons and market 

regimes. It showed that the performance does differ 

according to these dynamics (Yu et.al., 2010). Studies 

analyzing the forecasting accuracy of such VaR models 

showcased that changes in market conditions (Elenjical et 

al., 2016), classification of markets (Ng et al., 2014), stock 

size, liquidity (Bali & Cakici, 2004), etc., may also affect 

the predictive accuracy of these models. Similar studies also 

showed that changes in lag structure and forecast horizon 

chosen could also influence the accuracy of the VaR 

forecasts (Hafer & Sheehan, 1989). 

Maciel & Ballini (2017), while studying various range-

based volatility models in the context of Brazilian and 

American markets, showed that, while range based model 

outperforms the traditional models, the CARR model 

(Chou, 2005), an extension of the ACD class of models that 

incorporates price range, outperforms all models in 

predictive ability. Kumar (2016) further validated this 

finding that CARR models outperform traditional and 

range-based models. 
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Against this backdrop, the authors are interested in 

comparing and contrasting various GARCH class models 

and their predictive accuracy regarding VaR forecasts. 

Further, even though extensive research has gone into 

understanding and using volatility models in VaR 

forecasting, very few studies have attempted to assess the 

relative efficiency of these range-based models in VaR 

forecasting. This is especially true in the context of 

Emerging VS Developed economies. Therefore, this paper 

aims to understand if using a range-based volatility model 

will lead to superior forecast accuracy than its traditional 

counterparts, as seen in the literature. The authors also want 

to explore if market conditions can affect the result; hence, 

we compare BRICS and developed economies. 

Methodology: 

Theory  

This section first gives a brief overview of the various 

volatility models used in this study. The study uses both 

traditional and range-based volatility models for the 

analysis. The two most popular conventional volatility 

models are GARCH and TARCH, which consider daily log 

returns. The authors then study two range-based volatility 

models, RGARCH and RTARCH, in which range-based 

volatility is regarded as an exogenous variable. 

Traditional Volatility Models: 

 In these models, the daily log asset returns are modeled 

as follows: 

𝑟𝑡 = ln(
𝑃𝑡

𝑃𝑡−1
)………………………………………(1) 

Where 𝑃𝑡 is the price of the asset as on-time 𝑡 and 𝑃𝑡−1 

is the price of the asset as on-time 𝑡 − 1; 𝑡he price process 

is 𝜖~𝑖. 𝑖. 𝑑(0,1), with zero mean and 𝜎 denoting the time-

varying volatility. 

GARCH (1, 1) Model 

One of the first and most commonly used specifications 

for time-varying volatility is GARCH(1,1), developed by 

Bollerslev (1986). The Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) model is an 

extension of the Autoregressive Conditionally 

Heteroscedastic (ARCH) model, developed by Engle 

(1982), for modeling conditional volatility. These models 

help to forecast the time-varying conditional variance of a 

price series by using past unpredictable changes in the 

returns of that price series.   

The GARCH (1, 1) model can be denoted as: 

𝑟𝑡 = 𝜎𝑡 𝜖𝑡  ………………………..……………(2) 

The variance equation is denoted as: 

𝜎2
𝑡 = 𝜔 + 𝛽𝜎2

𝑡−1 + 𝛼𝑟2𝑡−1   ……………..…(3)                                              

Where  𝛼 > 0, 𝛽 > 0,𝜔 > 0 represent the coefficient 

for the short-term impact of 𝜖𝑡 on the conditional variance, 

the coefficient for long-term impact, and the constant term, 

respectively. 

 

TARCH (1, 1) Model 

Sometimes, one can observe that a downward 

movement in the market tends to be more highly volatile 

than an equally upward movement. In this scenario, a 

symmetric ARCH model is unsuitable as it does not 

consider the exact variance process. Engle & Ng (1993) 

considered including a news impact curve that will have 

asymmetric responses to good and bad news in the ARCH 

process to solve this issue. One such asymmetric model is 

the Threshold ARCH (TARCH) model by Zakoian (1990). 

The TARCH (1, 1) model can be denoted as: 

𝑟𝑡 = 𝜎𝑡 𝜖𝑡  ……………….…….(4) 

The variance equation is denoted as: 

𝜎2
𝑡 = 𝜔 + 𝛽𝜎2

𝑡−1 + 𝛼𝑟2𝑡−1 +
𝛾𝑟2𝑡−1𝐼𝑡−1…………………………………………(5) 

Where  𝛼 > 0, 𝛽 > 0,𝜔 > 0 represent the coefficient 

for the short-term impact of 𝜖𝑡 on the conditional variance, 

the coefficient for long-term impact, and the constant term, 

respectively. Additionally, 𝛾 captures the asymmetric 

(leverage effect) and 𝐼𝑡−1 = 1in the case of negative news 

and 𝐼𝑡−1 = 0 for any positive news. 

Range-Based Volatility Models: 

Next, the study considers range-based volatility models 

RGARCH and RTARCH, in which range-based volatility is 

regarded as an exogenous variable in the traditional 

GARCH and TARCH models. This aims to understand if 

including range will provide more information than daily 

closing asset returns. 

In these models, the range is defined as: 

𝑅𝑡 = ln(𝐻𝑡) − ln(𝐿𝑡)………………………………(6) 

Where 𝐻𝑡 is the highest price of the asset as on-time 𝑡 
and 𝐿𝑡 is the lowest price of the asset as on-time 𝑡. 

RGARCH (1,1,1)    

The Range GARCH (1, 1,1) model can be denoted by 

modifying the GARCH (1,1) as below: 

𝑟𝑡 = 𝜎𝑡 𝜖𝑡  ………………………..…….(7) 

The variance equation is denoted as: 

𝜎2
𝑡 = 𝜔 + 𝛽𝜎2

𝑡−1 + 𝛼𝑟2𝑡−1 + 𝜃𝑅𝑡−1
2  …..….(8)

    

Where  𝛼 > 0, 𝛽 > 0,𝜔 > 0 represent the coefficient 

for the short-term impact of 𝜖𝑡 on the conditional variance, 

the coefficient for long-term impact, and the constant term, 

respectively. 𝜃 capture the effect of range-based volatility 

on the volatility process. 

TARCH (1,1,1)    

The Range TARCH (1,1,1) model can be denoted by 

modifying the TARCH (1,1) as below: 

𝑟𝑡 = 𝜎𝑡 𝜖𝑡  ………………………..………….(9) 

The variance equation is denoted as: 

𝜎2
𝑡 = 𝜔 + 𝛽𝜎2

𝑡−1 + 𝛼𝑟2𝑡−1 + 𝛾𝑟2𝑡−1𝐼𝑡−1 + 

𝜃𝑅𝑡−1
2  …………………………………………….(10) 

Where  𝛼 > 0, 𝛽 > 0,𝜔 > 0 represent the coefficient 

for the short-term impact of 𝜖𝑡 on the conditional variance, 

the coefficient for long-term impact, and the constant term, 

respectively.𝛾 captures the asymmetric (leverage effect) 

and 𝐼𝑡−1 = 1in the case of negative news and 𝐼𝑡−1 = 0 
for any positive news. 𝜃 capture the effect of range-based 

volatility on the volatility process. 

Estimation Techniques 

In this section, the authors provide details of the various 

econometric analysis done in this study. 
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In-Sample Estimation 

Firstly, the traditional volatility models (GARCH (1,1) 

& TARCH (1,1)) as well as the range base volatility models 

(RGARCH (1,1,1) & RTARCH (1,1,1)) models for the in-

sample period on the various indices as described above 

(Equations 2-10) are run. The study uses daily close-to-close 

log returns to run the traditional models, and daily log range 

returns to run the range-based volatility models. Then the 

study compares the model fitness and suitability based on 

the log-likelihood functions and AIC & BIC information 

criteria.  

Out-of-Sample Analysis 

One cannot observe the actual volatility in asset returns 

directly. Hence, one often resorts to various proxies for 

volatility to understand the forecasting capacity of the 

models. One could use high-frequency data to estimate 

volatility. Andersen et al., (2001), Zhang et al., (2005), etc., 

used high-frequency return data to estimate the realized 

volatility. Since the high-frequency data help to capture the 

time-varying volatility more closely, the estimators based 

on them are generally considered more efficient. However, 

for many assets, high-frequency price data is not available. 

Moreover, they are more affected by market 

microstructure errors. This may make the estimators based 

on the high-frequency data biased and inconsistent. 

Anderson & Bollerslev (1998) showed that using daily 

squared return as a proxy for volatility can be noisy. 

However, comparing the availability of data and the effect 

of market microstructure, the study uses daily squared close-

to-close return as a proxy for realized volatility in this study.  

Next, the study uses the estimates from the in-sample 

analysis and the proxy for realized volatility to understand 

the models' forecasting performance. The estimation errors 

in the proxies used for volatility can affect our judgment 

regarding the competency of the volatility models in 

forecasting. This is analyzed with the help of statistical loss 

functions proposed by Patton (2011), namely MSE & 

QLIKE loss functions. A loss function helps to measure how 

well our model can predict the expected output. The Mean 

Squared Error loss function (MSE), a commonly used loss 

function, penalizes the forecasting error symmetrically. 

Since one squares the errors, MSE can never be negative. It 

can be defined as: 

𝑀𝑆𝐸 = 𝐸(𝜎𝑡
2 − 𝜎𝑡

2̂)………………………………(11) 

Where, 𝜎𝑡
2 is the forecasted variance and 𝜎𝑡

2̂ is the actual 

realized variance (daily squared return). 

On the other hand, the quasi-likelihood (QLIKE) loss 

function penalizes the forecasting error asymmetrically by 

giving more penalty to under-prediction than over-

prediction. The QLIKE loss function is defined as: 

𝑄𝐿𝐼𝐾𝐸 = 𝐸(log(𝜎𝑡
2̂) + 𝜎𝑡

2𝜎𝑡
−2̂)………………..…(12) 

Where, 𝜎𝑡
2 is the forecasted variance and 𝜎𝑡

2̂ is the actual 

variance (daily squared return). 

Since these are loss functions, the lower the values for 

MSE & QLIKE, the better the forecasting & predictive 

capacity of the models.  

 
1 All the tables are presented in the Annexure of this paper at the 

end. 

The study further employs the Diebold-Mariano (DM) 

test statistic proposed by Diebold & Mariano (1995) to 

assess the forecasting accuracy of the volatility models 

econometrically. The null hypothesis of this test is that the 

models being tested have equal predictive accuracy, thereby 

providing equally accurate forecasts.  

The DM test is defined as: 

𝐷𝑀 =
�̅�

𝑠𝑞𝑟𝑡(𝑉𝑎𝑟(�̅�)
………………………………… (13) 

Where, 𝑑𝑡 is the loss differential of the forecasting 

models , 𝑗: 𝐿𝑡
𝑖 − 𝐿𝑡

𝑗
. The loss is defined as: 𝐿𝑡 = 𝜎𝑡

2 − 𝜎𝑡
2̂. 

Therefore, �̅� = 𝑇−1∑ 𝑑𝑡+𝑗
𝑇
𝑗=1 , where 𝑇 is the total number 

of forecasts. The variance of this loss differential is 

estimated as per Newey & West (1987). Further, DM 

~𝑁(0,1). 
 

Data & Empirical Analysis 

Data 

This study uses daily price data {opening, closing, 

highest and lowest} for BRICS economies, namely, Brazil 

(IBOVESPA), Russia (MOEX), India (Nifty50), China 

(Shanghai), and South Africa indices respectively as well as 

three major developed economies, namely, The USA 

(S&P), UK (UXX) and Germany (DAX) indices 

respectively for the period January 2003- October 2021. The 

data is divided into in-sample and out-sample periods, 

wherein the last 1000 observations are considered for out-

of-sample forecasting and accuracy testing procedures. Out-

of-sample forecasts are based on re-estimated volatility 

model parameters using a rolling window method. The in-

sample data (up to 𝑁1000𝑜𝑏𝑠) is made use of in the volatility 

modeling. As true volatility cannot be observed, the study 

uses a commonly used proxy for volatility, "Squared daily 

return," to enable comparison between the model's 

predictive performances. 

Results & Discussion 

This section provides a detailed account of the empirical 

analysis undertaken to estimate the various volatility 

models, followed by performance measures. 

Data Description1 

First, the authors present the summary statistics of the 

asset returns for all the indices for 2003-2021 in Table 1. 

Panel A depicts the results for the BRICS indices, while 

Panel B represents the summary statistics for the developed 

economies. 
 

<INSERT TABLE 1 HERE> 
 

From Table 1, one can see that for all the indices, daily 

close-to-close and range returns have zero mean and similar 

variance. The series distribution exhibits excess kurtosis, 

indicating that the distribution follows non-normality. 

While daily close-to-close returns have negative skewness, 

range-based returns exhibit positive skewness, indicating 

the existence of fat tails in the daily return series. A higher 

autocorrelation function value (ACF) and the Ljung box Q 
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statistics suggest higher persistence in range than return 

series for both indices. This again validates the argument 

that range-based estimators are more suitable and efficient 

than return-based estimators. 

In-Sample Analysis 

Tables 2-9 present the empirical results of the volatility 

estimation for the various models, namely, GARCH (1,1), 

TARCH (1,1), RGARCH (1,1,1), and RTARCH (1,1,1) for 

the in-sample period for all the indices respectively. While 

the traditional GARCH (1,1) and TARCH (1,1) make use of 

daily closing price data alone, range-based models like 

RGARCH (1,1,1) and RTARCH (1,1,1) incorporate daily 

price range as an exogenous variable.  

BRICS Economies 

From Table 2 for the Nifty index, one can see that news 

(positive or negative) seems to affect only traditional 

models, as evidenced by the significant 𝜔 coefficient. 

Further, traditional models exhibit long memory in their 

volatility, as seen by the significant 𝛽 coefficient. The effect 

of 𝛼 is also substantial only for the conventional models, 

indicating short memory in the volatility process.  𝛾, which 

captures the leverage effect in TARCH and RTARCH 

models, is significant, thereby conforming to asymmetry in 

reactions to shocks. Lastly, 𝜃, which captures range as an 

exogenous variable in the traditional models, is substantial 

for both RGARCH and RTARCH models, thereby 

confirming the claim that range-based volatility models 

provide more information to volatility modeling. The LLH, 

AIC, and BIC criteria show that the models are 

parsimonious, with range-based models being more 

parsimonious.  
 

<INSERT TABLE 2 HERE> 
 

For an emerging market like China, from Table 3, one 

can see that only the traditional models seem to capture the 

effect of news (positive or negative) as evidenced by the 

significant 𝜔 coefficient. Further, GARCH(1,1), 

TARCH(1,1), and RTARCH(1,1) have a significant 𝛽 

coefficient, and hence these exhibit long memory in their 

volatility. The effect of 𝛼 is essential across all the models, 

indicating short memory in the volatility process.  𝛾, which 

captures the leverage effect in TARCH and RTARCH 

model, is insignificant, meaning there is no asymmetry in 

reactions to shocks. Lastly, 𝜃, which captures range as an 

exogenous variable in the traditional models, is significant 

only for the RGARCH model, indicating that RGARCH 

alone seems to capture range-based information. All the 

models are more or less equally parsimonious, as seen from 

the LLH, AIC, and BIC criteria. 
 

<INSERT TABLE 3 HERE> 
 

Empirical findings for the Brazilian index, IBOVESPA, 

presented in Table 4, paint a similar picture as the Indian 

index, Nifty, with the empirical deductions being 

qualitatively identical. From this analysis, one can also 

observe that these two markets seem to react in the same 

asymmetric manner to news and shocks. The traditional 

models can also capture the long and short-memory effects 

of the asset return volatilities. Here, also, the range-based 

models seem more parsimonious. The significant θ 

coefficient that captures range as an exogenous variable in 

the traditional models is substantial for both RGARCH and 

RTARCH models, thereby confirming the claim that range-

based volatility models provide more information to 

volatility modeling. 
 

<INSERT TABLE 4 HERE> 
 

From Table 5, even the Russian market, another 

emerging market, confirms the claim that range-based 

models capture more information than traditional models,s 

as seen from the significant 𝜃 coefficients. Further, the 

information criterion shows that all models are 

parsimonious. Only the conventional models can capture the 

reaction to the news as validated by the significant 𝜔 

coefficient. More or less, all the models exhibit long or short 

memory in their volatility, as seen by the significant 𝛽 

coefficient and 𝛼 coefficient, respectively. There is a 

leverage effect as captured by the significant 𝛾 coefficient.  
 

<INSERT TABLE 5 HERE> 
 

For the South African index, from Table 6, one can 

understand that, even though the deductions about all 

models being able to capture long or short memory along 

with asymmetric reaction to shocks are qualitatively similar 

to other emerging BRIC economies, interestingly, the 𝜔 

coefficient is insignificant for all models. Once again, all 

models are more or less equally parsimonious, with the 

range-based models exhibiting higher simplicity. 
 

<INSERT TABLE 6 HERE> 
 

Developed Economies 
 

<INSERT TABLE 7 HERE> 
 

Table 7 presents the estimation results for the SPX 

index for the in-sample period. The results are qualitatively 

similar to the results obtained for the Nifty index in Table 2. 

Traditional models seem to be affected by news, exhibit 

short and long memory in the volatility process, and also 

exhibit the leverage effect. A significant 𝜃 value for 

RGARCH and RTARCH models confirms that range as an 

exogenous variable does add meaningful information 

content to the traditional volatility models. Once again, 

based on LLH, AIC, and BIC criteria, all models are 

parsimonious, with range-based models being simpler with 

few parameters. 
 

<INSERT TABLE 8 HERE> 
 

One can draw similar conclusions about the UK index 

(UXX), as seen in Table 8, as the SPX indices. Only the 

traditional models can account for the reaction and the 

asymmetry in response to news and shocks. Further, only 

the conventional models exhibit short and long memory in 

their return series. One can also confirm that range-based 

models offer additional information, as evidenced by the 

significant 𝜃 coefficient. Lastly, the relative simplicity of 

the range models is clear from the information criterion. 
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<INSERT TABLE 9 HERE> 
 

As seen in Table 9, the German-based DAX index also 

paints a similar picture as the other indices. One can once 

again confirm that, while traditional models exhibit memory 

and asymmetric reaction to shocks, range-based models 

provide additional information and are more parsimonious. 

Out of Sample Analysis 

Loss Functions 

To determine which volatility model performs better 

when it comes to forecasting performance, the study 

computes the MSE and QLIKE loss functions for each of 

the indices for the out-of-sample period. It uses squared 

daily closing returns as a proxy for realized volatility. 

BRICS Economies 

Table 10. presents the results for the BRICS economies. 

Since MSE and QLIKE are loss functions, the lower their 

values, the better the model's predictive capacity; one can 

see that for MSE, for all the models, range-based models 

perform better, as evidenced by their lower values. As per 

QLIKE function values, most models have almost equal 

predictive accuracy, with range-based models scoring better 

in some cases. This again validates the claim that range-

based models perform better than traditional models due to 

the higher information content encompassed in the former. 
 

<INSERT TABLE 10 HERE> 
 

Developed Economies 
 

One can draw a similar conclusion that even in the case 

of developed economies, range-based models perform 

better, as evidenced by their lower MSE values, as depicted 

in Table 11. Further, range-based GARCH performs better 

than traditional GARCH, and RTARCH is better than 

TARCH for both indices with their lower QLIKE function 

values.  
 

<INSERT TABLE 11 HERE> 
 

DM Test 
 

BRICS Economies 
 

Table 12 presents the DM test statistic results to 

determine which model statistically performs better in terms 

of volatility forecasting for the BRICS indices for the out-

of-sample period. The null hypothesis is that the comparing 

models have similar predictive accuracy. At the 5% 

significance level, one can see that, more or less, both range-

based models outperform traditional GARCH & TARCH 

models with superior predictive accuracy as evidenced by 

the significant p-values, except in the case of South Africa. 
 

<INSERT TABLE 12 HERE> 
 

From Table 13, one can confirm that, even for 

developed economies, range-based models have superior 

predictive accuracy compared to traditional models. Even 

though both GARCH and TRACH models exhibit similar 

predictive capacities, RGARCH outperforms TARCH and 

RTARCH models, respectively, while RTARCH 

outperforms the TARCH model. 

<INSERT TABLE 13 HERE> 
 

Application of GARCH Class of Models in Risk 

Assessments: Value at Risk (VaR) 
 

Value-at-risk (VaR) is often used as a proxy for market 

risk by various parties like financial institutions, regulators, 

business practitioners, and portfolio managers. VaR is the 

"maximum possible loss that a portfolio could experience at 

a given level of confidence over a given time horizon" 

(Kumar, 2016). Using VaR to measure the minimum capital 

requirement in case of any uncertainties in the market was 

first adopted by J.P. Morgan (Longerstaey & Spencer, 

1996), a financial institution. VaR is also often used in 

developing risk mitigation policies by traders, financial 

institutions, and investment banks.  

Research has used different methods to estimate VaR, 

namely non-parametric and parametric. In the parametric 

approach, one assumes that the underlying distribution of 

the asset returns is gaussian. Hence, the probability 

distribution estimation considers the distribution parameters 

(population mean and population standard deviation). In the 

non-parametric approach, one makes no such assumptions 

about the return distribution; hence, empirical distributions 

are used to determine the population distribution parameters 

(Ballotta & Fusai, 2017).  

One of the significant challenges with VaR is that it 

does not account for volatility clustering, due to which risk 

or losses gets undervalued. Therefore, using GARCH class 

of volatility models to estimate VaR circumvents this issue, 

as the former accounts for conditional volatility. Further, as 

mentioned before, range-based volatility measures have 

been considered more efficient than traditional volatility 

measures as they encompass more market information than 

just the closing prices. Therefore, in this study, the authors 

use the GARCH, TARCH, RGARCH, and RTARCH 

models for modeling and forecasting VaR to investigate if 

the range-based volatility models can better model and 

predict VaR than the traditional models. The study also 

wants to explore if the conclusion derived differs between 

an emerging and a developed economy. 

Estimating Value at Risk (VaR): 

VaR is the potential loss of a financial asset over a 

period ℎ at a significance level 𝛼, and it is not expected to 

exceed probability 1 − 𝛼. VaR can be denoted as: 

𝑝𝑟𝑜𝑏(𝑟𝑡+ℎ ≤ 𝑉𝑎𝑅𝑡+ℎ
𝛼 ) = 1 − 𝛼…………………(14) 

Here, ℎ = 1 denotes daily frequency.   

VaR is the 𝛼th quantile of the conditional distribution 

of asset returns denoted as: 

 𝑉𝑎𝑅𝑡+ℎ
𝛼 = 𝐶𝐷𝐹(𝛼)……………………….……..(15) 

The parametric VaR at time 𝑡 + 1is denoted as:  

𝑉𝑎𝑅𝑡+ℎ
𝛼 = 𝜎𝑡+1

̂ 𝐶𝐷𝐹𝑧
−1(𝛼)……………………… (16) 

Wherein 𝜎𝑡+1
̂ is the forecasted volatility at 𝑡 + 1, which 

is obtained by finding 𝜎 in fitted values from the model. 

Here, ℎ = 1 denoting daily frequency as analyzing over a 

daily horizon would give more insights for practical 

purposes. 𝐶𝐷𝐹𝑧
−1(𝛼) denotes the critical value obtained 

from the normal distribution table at a confidence level of 

𝛼. Return-based volatility models (GARCH and TARCH) 
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and range-based volatility models (RGARCH and 

RTARCH) were used to obtain 𝑉𝑎𝑅𝑡+ℎ
𝛼 = 𝜎𝑡+1

̂ 𝐶𝐷𝐹𝑧
−1(𝛼).  

The study uses historical simulations by developing 

CDF for the asset returns over time for calculating non-

parametric VaR. Unlike the parametric VaR models, one 

doesn't make any distributional assumptions in the non-

parametric VaR model. This is done to create more 

generalizable conclusions without making any 

distributional assumptions.  

VaR forecasting Model Performance Evaluation: 

Backtesting 

As mentioned before, one major lacuna in the non-

parametric VaR model is the assumption that asset returns 

are i.i.d. However, stylized facts of asset returns have shown 

that asset returns exhibit volatility clustering and hence are 

not i.i.d. Also, equal weightage is assigned to all asset 

returns across the return period. All these necessitate 

checking the accuracy and validity of the VaR forecasts 

computed above. 

The performance and validity of any VaR modeling and 

forecasting approach are assessed by measuring the number 

of violations/exceptions. The violation at a given VaR level 

is calculated by comparing the trading losses with the 

estimated VaR. It also accounts for fat tails, an essential 

assumption in VaR modeling (Bollerslev et al., 1992; 

Pagan, 1996; Palm, 1996). The study also accounts for 

possible asymmetry in asset return distributions by 

including asymmetric volatility models (Barndorff & 

Nielsen, 1997; Giot & Laurent, 2004). 

In a back-testing approach, the study compares the 

estimated VaR with the actual return over the forecasted 

period. It is considered an exceedance when there is more 

negative return than what is estimated by VaR, also called 

"failure rates." The failure rate must match the VaR level 

specified in a correctly identified model. In this study, two 

coverage tests, namely, the unconditional coverage test and 

conditional coverage tests proposed by Kupiec (1995) and 

Christoffersen (1998), are used to test the same. 

In the Unconditional Coverage test by Kupiec (1995),  

one tests if the realized coverage rate (𝛼)for the back-tested 

sample consisting of 𝑇 observations equals the theoretical 

coverage rate (𝛼). If the loss exceeds the VaR expectation, 

𝐼𝑡𝛼 = 1&0 if vice-versa, wherein 𝛼~binomial distribution. 

The likelihood ratio statistic follows a chi-square 

distribution with 𝑑𝑓 = 1, denoted as: 

𝐿𝑅𝑈𝐶(𝛼) = −2 ln[(1 − 𝛼)𝑇−𝑁𝛼𝑁] + 2ln[(1 −

(
𝑁

𝑇
)
𝑇−𝑁

(
𝑁

𝑇
)
𝑁

]…………………….……………………(17) 

Here, 𝑁denotes the number of violations. 

In the Conditional Coverage test by Christoffersen 

(1998), one additionally checks for the independence of the 

sequence of violations, thereby combining both frequency 

and independence properties. 

𝐿𝑅𝐶𝐶(𝛼) = −2ln[(1 − (
𝑁

𝑇
)
𝑇−𝑁

(
𝑁

𝑇
)
𝑁

] + 2 ln[(1 −

𝜋01̂)
𝑛00𝜋01̂01

𝑛 (1 − 𝜋11̂)
𝑛01𝜋11̂11

𝑛 ] + 2ln[(1 −

(
𝑁

𝑇
)
𝑇−𝑁

(
𝑁

𝑇
)
𝑁

] + −2 ln[(1 − 𝛼)𝑇−𝑁𝛼𝑁]………………(18) 

Here, 𝑛𝑖𝑗 , 𝑖. 𝑗 = 0,1 is the number of times 𝐼𝑡(𝛼) = 𝑗 

and 𝐼𝑡−1(𝛼) = i with 𝜋01̂ =
𝑛01

𝑛00+𝑛01
 and 𝜋11̂ =

𝑛11

𝑛10+𝑛11
.  

It is to be noted that it is plausible that one might pass 

the joint test while failing either the independence or 

unconditional coverage test; hence, the study reports both 

results. 

Empirical Results & Discussion for VaR Modeling 

& Back-Testing 

In this section, the authors present Tables 14, which 

provides the results for unconditional (Kupiec, 1995) and 

conditional coverage tests (Christoffersen, (1998) for the 

out-of-the-sample period for BRICS indices, respectively. 

For this, 1-step ahead back testing at a 95% confidence level 

is performed. This means that, with a probability of 95%, 

one cannot lose (maximum/threshold loss) more than VaR 

estimated over one day. Since financial institutions typically 

use a confidence level of 5%, VaR within the tail end of the 

distribution curve using a 95% confidence level is chosen 

for back-testing purposes. It is to be noted that the tail of the 

curve denotes losses. A rolling window estimation 

technique refits the estimates every 25th day. Usually, one 

goes for an entire period analysis assuming that the 

distribution parameters (mean & standard deviation) will 

remain constant over the entire sample period. But this is not 

true. Significantly the more extended the period, the more 

susceptible the parameters to change. Therefore, in this 

study, the volatility model parameters are re-estimated for 

forecasting for a fixed data window of 25 days. Each time, 

the last observation is removed to maintain uniformity in the 

data window size. The study also presents a comparative 

picture of actual exceedances with expected exceedances to 

identify which models have performed better. 

<INSERT TABLE 14 HERE> 

From Table 14, at 95% confidence levels, for the Nifty 

& IBOVESPA indices, all the models (traditional as well as 

range-based) models can correctly estimate the risk, as in 

none of the cases,  one is unable to reject the null hypothesis 

of correct exceedances and or independence. Whereas, in 

the case of Shanghai and South Africa indices, only range-

based models perform better than traditional models. Only 

Russia paints a different picture, with conventional models 

showcasing slightly better performance. Overall, one can 

conclude that for the BRICS economies, amongst the 

models, range-based models perform better, as evidenced by 

lower exceedance (%). 

<INSERT TABLE 15 HERE> 

From Table 15 for the developed economies, at a 95% 

confidence level, all the models except for range-based 

TARCH seem unrealistically conservative leading to the 

rejection of the null hypothesis of correct exceedances in the 

case of the SPX index. For the DAX index, range-based 

models perform better as only the RGARCH and RTARCH 

clear the coverage tests. In the case of the UXX index, while 

the range-based models pass only the unconditional tests, 

the traditional models show slight superiority in forecasting 

accuracy. This minor difference in the forecasting ability of 

VaR models can be attributed to higher noise witnessed in 
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developed nations (He & Wang, 1995), making it easier to 

account for volatility in these economies. Further, while 

Arago & Neito (2005) attributed this difference to increased 

trading volume in an emerging economy, Girard & Biswas 

(2007) linked it to weaker market efficiency in emerging 

markets. However, overall, one can still conclude that, 

amongst the models, range-based TARCH performs better 

with lower exceedances (%).   

Based on the empirical findings, one can conclude that 

range-based VaR models better provide more accurate VaR 

forecasts. This could be attributed to the incremental 

information that the range offers. Further, since geographic 

diversification of assets is imperative to mitigate portfolio 

risk exposure, a comparison between the performance of the 

VaR models across developing and developed economies is 

warranted. It has also been documented that foreign 

investors are attracted by developing economies due to the 

low correlation between the two markets (Sharma et.al., 

2016). Also, a financial crisis has a significant impact across 

markets. Volatility is considered a primary channel for these 

market linkages. Therefore, a comparative study becomes 

pertinent to understand if there is any change in the volatility 

dependence structure over time across markets. The 

findings from the data show that the range-based measures 

perform better in developing economies than in developed 

markets. This finding will help better risk management in a 

developing economy.  

Conclusion & Implications of the Study 

Value at risk is one of the most widely used market risk 

measures by financial institutions, regulators, and market 

participants. Precision in the estimation of volatility will 

help in making accurate VaR forecasts. Further, since 

volatility is time-varying and has a clustering effect, 

volatility models like GARCH and its various extensions 

prove helpful in modeling this volatility better. A plethora 

of research has identified that range-based measures are 

more efficient regarding volatility estimation than 

traditional models that use only closing prices.  

In this study, the authors combine all these three factors 

and investigate which volatility model performs better in 

VaR forecasting. This is done by incorporating closing and 

range-based price data to explore if the latter performs 

similarly to the closing prices. For this, the authors compare 

traditional daily return-based models like GARCH and 

TARCH with range-based specifications of the same, 

namely, RGARCH and RTARCH. An empirical 

investigation of the BRICS and select developed markets 

shows that range-based models do a better job in VaR 

forecasting as it has more information content than daily 

closing prices. Therefore, through this study, it is shown that 

there exists a simple and efficient alternative to estimate 

VaR using the range-based GARCH family of volatility 

models. 

This finding is of immense help to market players using 

VaR to predict their risk and loss. Since VaR is a commonly 

used measure of risk estimation, incorporating information 

in the form of high -low data enhances its usefulness to all 

stakeholders.   

The findings will help financial institutions like banks, 

which can accurately forecast losses using accurate risk 

estimates. This will assist in allocating capital reserves to 

cover potential losses. The study's findings will also help 

practitioners make use of technology rightfully clubbed with 

theoretical knowledge in implementing VaR estimation 

using intraday data and developing virtual investment 

advisors. Further, as seen in the case of the latest Covid-19 

pandemic, when markets experience high levels of 

volatility, it becomes imperative to have in place effective 

market risk mitigation strategies like range-based VaR. 

Further, since range-based VaR models perform better 

in a developing economy than in a developed economy, risk 

managers can use range-based VaR in a developing 

economy and may complement it with other measures like 

Expected Shortfall in the context of developed economies to 

accurately measure market risk. 

One can extend this research by seeing if the results 

change due to financial crisis/shock. One can also see if 

different distributional assumptions of the GARCH class 

models would yield different results. Further, as proposed 

by Nieto & Ruiz (2016), one can incorporate bias correction 

to learn if it will lead to a better predictive ability of the 

GARCH-based VaR models. For better forecasting 

accuracy, one can also account for bias correction in 

volatility estimation using range data as proposed by Shaik 

& Maheswaran (2020). One can also explore the possibility 

of higher accuracy in VaR estimates by using a more 

dynamic high-frequency data set to compute realized 

volatility from this intraday data set. 



Inzinerine Ekonomika-Engineering Economics, 2023, 34(3), 275–292 

283 

 

TABLES 2 
Table 1 

Summary Statistics for the Period 2003-2021 

Source: Prepared by authors 

Note:  Q(15) is the Ljung Box Q statistics for autocorrelation   ** denotes significance at 5% 

 
2 To be inserted within Text 

Panel A: Descriptive statistics for BRICS indices for the period 2003-2021 

Statistics 
Nifty close-to-close 

returns 

Nifty Range 

based 

returns 

IBOVESPA 

close-to-close 

returns 

IBOVESPA 

Range based 

returns 

MOEX 

close-to-

close 

returns 

MOEX 

Range based 

returns 

Shanghai 

close-to-

close 

returns 

Shanghai 

Range 

based 

returns 

South 

Africa 

index close 

to close 

returns 

South Africa 

index Range 

based 

returns 

Mean 0.0006 0.0165 0.0005 0.0210 0.0005 0.0208 0.0002 0.0178 0.0004 0.0161 

Std 

Deviation 
0.0142 0.0131 0.0173 0.0138 

0.0188 0.0173 0.0154 0.0120 0.0131 0.0096 

Skewness -0.4951 4.2973 -0.4273 4.4021 -0.2882 4.2947 -0.5180 2.2797 -0.2160 3.2377 

Kurtosis 12.3888 35.6376 9.4860 34.8569 21.5953 32.394 4.7751 7.6897 5.1044 21.9910 

Maximum 0.1633 0.2035 0.1384 0.2245 0.2523 0.2754 0.0903 0.1064 0.0906 0.1523 

Minimum -0.1390 0.0023 -0.1625 0.0035 -0.2066 0.0000 -0.0926 0.0025 -0.1045 0.0000 

ACF (1) 1.0009 1.0001 1.0001 1.0001 1.0001 1.0001 1.0001 1.0001 1.0001 1.0001 

ACF(15) 0.0050 0.3950 0.0000 0.3820 0.0230 0.4610 0.0360 0.3940 0.0280 0.4100 

Q(15) 65.474 ** 16135** 37.318** 17255** 46.969** 19170** 63.287** 14122** 44.421** 15733** 

Panel B: Descriptive Statistics for Developed Indices for the Period 2003-2021 

Statistics 
SPX close-to-close 

returns 

SPX Range 

based 

returns 

DAX close-to-

close returns 

DAX Range 

based returns 

UXX close-

to-close 

returns 

UXX Range 

based returns 
     

Mean 0.0003 0.0122 0.0003 0.0152 0.0001 0.0133     
Std 

Deviation 
0.0120 0.0099 0.0106 0.0106 

0.0112 0.0096     
Skewness -0.5529 3.5411 -0.1957 2.6241 -0.3652 3.3171     
Kurtosis 14.1951 20.2225 7.8786 11.4089 10.4494 18.612     

Maximum 0.1096 0.1090 0.1080 0.1114 0.0938 0.1151     
Minimum -0.1277 0.0015 -0.1305 0.0014 -0.1151 0.0023      
ACF (1) 1.0001 1.0001 1.0001 1.0001 1.0001 1.0001  

 
 

 

ACF(15) -0.0710 0.4810 -0.0190 0.4670 -0.0260 0.4460     
Q(15) 171.31** 24791** 15.2180 21969** 59.326** 21600**      
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Table 2 

Return and Range-Based Volatility Model Estimates for the Nifty50 Index for the In-Sample Period 

Parameters GARC

H(1,1) 

TARCH(1,1) RGARCH(1,1,1) RTARCH(1,1,1) 
  

Ω  2.40E-06** 2.87E-

04** 

2.88E-12 7.44E-16 
  

Α 0.1006** 1.01E-

01** 

0.0005 0.0004 
  

Β 0.8906** 0.8997*

* 

0.0002 0.0002 
  

Υ 
 

0.4810*

* 

 
0.0242 

  

ϴ 
  

0.0075** 0.02419** 
 

LLF 11016.47 11111 11553.31 11551.37 
  

AIC -5.9904 -6.0418 -6.2830 -6.2809 
  

BIC -5.9803 -6.0317 -6.2746 -6.2691 
  

Source: Prepared by authors  

Note: ** and * represents significance at 5 % and 10 %, respectively 
  

L is the log-likelihood function value, and the AIC and BIC denote the Akaike and Schwarz information criteria, respectively. 

Table 3  

Return and Range-Based Volatility Model Estimates for the Shanghai Index for the In-Sample Period 

Parameters GARC

H(1,1) 

TARCH(1,1) RGAR

CH(1,1,

1) 

RTARCH(1,1,1) 
  

Ω  7.6944E

-07 

0.0001** 2.8518E

-16 

9.4133E-07 
  

Α 0.0547*

* 

0.0664** 0.0278* 0.0569** 
  

Β 0.9439*

* 

0.9467** 0.0167 0.9423** 
  

Υ  0.0372  0.0008 
  

ϴ   0.0088*

* 

1.1561E-08 
 

LLF 10161.0

2 

10269.54 10673.4

6 

10266.82 
  

AIC -5.6923 -5.7531 -5.9801 -5.7510 
  

BIC -5.6819 -5.7427 -5.9714 -5.7389 
  

Source: Prepared by authors 

Note: ** and * represents significance at 5 % and 10 %, respectively 
    

Table 4  

Return and Range-Based Volatility Model Estimates for the IBOVESPA Index for the In-Sample Period 

Parameters GARC

H(1,1) 

TARC

H(1,1) 

RGARCH(

1,1,1) 

RTARCH(

1,1,1) 

 
  

Ω 5.3863E

-06** 

0.0004*

* 

1.09862E-

12 

3.18776E-

16 

  

Α 0.0666*

* 

0.6816*

* 

0.0001 0.0001 
  

Β 0.9118*

* 

0.9232*

* 

0.0001 0.0001 
  

Υ  0.5296*

* 

 0.0058 
  

ϴ   0.0089** 0.0088** 
 

Parameters GARC

H(1,1) 

TARC

H(1,1) 

RGARCH(

1,1,1) 

RTARCH(

1,1,1) 

  

LLF 10159.5 10211.9 10735.84 10732.13 
  

AIC -5.5574 -5.5862 -5.8735 -5.8703 
  

BIC -5.5473 -5.5759 -5.8649 -5.8584 
  

Source: Prepared by authors 

Note: ** and * represents significance at 5 % and 10 %, respectively 
    

L is the log-likelihood function value, and the AIC and BIC denote the Akaike and Schwarz information criteria, respectively.  
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Table 5 

Return and Range-Based Volatility Model Estimates for the MOEX index for the In-Sample Period 

Parameters GARC

H(1,1) 

TARC

H(1,1) 

RGARCH(

1,1,1) 

RTARCH(

1,1,1) 

  

Ω 6.1234E

-06** 

0.0002*

* 

2.9511E-07 2.9598E-07 
  

Α 0.1077*

* 

0.1089*

* 

1.6999E-05 2.8713E-

05* 

  

Β 0.8766*

* 

0.9043*

* 

0.0003** 0.0003 
  

Υ  0.9043*

* 

 -1.1544E-

05** 

  

ϴ   0.0095** 0.0095** 
 

LLF 10141.9

3 

10281.5

3 

10759.74 10765.02 
  

AIC -5.4626 -5.5379 -5.7961 -5.7979 
  

BIC 5.4526 -5.5278 -5.7878 -5.7863 
  

Source: Prepared by authors 

      

Note: ** and * represents significance at 5 % and 10 %, respectively 
   

 

Table 6 

Return and Range-Based Volatility Model Estimates for the South Africa Index for the In-Sample Period 

Parameters GARC

H(1,1) 

TARC

H(1,1) 

RGARCH(

1,1,1) 

RTARCH(

1,1,1) 

  

Ω 2.0055E

-06 

0.0002 1.3383E-15 1.7208E-06 
  

Α 0.0879*

* 

0.0624*

* 

0.0021 0.0020 
  

Β 0.8999*

* 

0.9365*

* 

0.0555** 0.9210 
  

Υ  0.9014*

* 

 0.1289** 
  

ϴ   0.0066** 1.1901E-08 
 

LLF 11383.5

8 

11448.1

9 

11803.16 11438.34 
  

AIC -6.1417 -6.1766 -6.3688 -6.1708 
  

BIC -6.1317 -6.1666 -6.3604 -6.1590 
  

Source: Prepared by authors 

      

Note: ** and * represents significance at 5 % and 10 %, respectively 
   

L is the log-likelihood function value, and the AIC and BIC denote the Akaike and Schwarz information criteria, respectively.  
Table 7 

 Return and Range-Based Volatility Model Estimates for the SPX Index for the In-Sample Period 

Parameters GARCH(1

,1) 

TARCH(1,

1) 

RGAR

CH(1,1,

1) 

RTARCH(1,1

,1) 

  

Ω 1.81E-06** 0.0002** 1.67E-

16 

2.24E-16 
  

Α 0.0968** 0.0878** 0.0010 3.61E-07 
  

Β 0.8843** 0.9144** 0.0007 0.0013 
  

Υ 
 

0.9999** 
 

0.0276 
  

ϴ 
  

0.0059*

* 

0.0058** 
 

LLF 12372 12518.44 12902.6

9 

12909.8 
  

AIC -6.6199 -6.6983 -6.9045 -6.9073 
  

BIC -6.6099 -6.6883 -6.8962 -6.8956 
  

Source: Prepared by authors 

      

Note: ** and * represents significance at 5 % and 10 %, respectively 
   

L is the log-likelihood function value, and the AIC and BIC denote the Akaike and Schwarz information criteria, respectively. 
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Table 8 

Return and Range-Based Volatility Model Estimates for the UXX Index for the In-Sample Period 

Parameters GARCH(1,1) TARCH(1,1) RGARCH(1,1,1) RTARCH(1,1,1) 
  

Ω 1.56E-05 0.0002** 4.18E-14 1.32E-15 
  

Α 0.1037** 0.0774** 0.0089 1.31E-05 
  

Β 0.8825** 0.9221** 0.0017 0.0004 
  

Υ  0.9999**  0.0546 
  

ϴ   0.0053** 0.0051** 
 

Parameters GARCH(1,1) TARCH(1,1) RGARCH(1,1,1) RTARCH(1,1,1)  

LLF 12883.96 13006.96 13436.77 13443.26 
  

AIC -6.5905 -6.6535 -6.8739 -6.8762 
  

BIC -6.5809 -6.6438 -6.8659 -6.8650 
  

Source: Prepared by authors 

      

Note: ** and * represents significance at 5 % and 10 %, respectively 
 

L is the log-likelihood function value, and the AIC and BIC denote the Akaike and Schwarz information criteria, respectively.  

Table 9 

Return and Range-Based Volatility Model Estimates for the DAX Index for the In-Sample Period 

Parameters GARCH(1,1) TARCH(1,1) RGARCH(1,1,1) RTARCH(1,1,1) 
  

Ω 2.25E-06** 0.0002** 3.44E-14 2.47E-16 
  

Α 0.0855** 0.0747** 0.0007 4.05E-06 
  

Β 0.9013** 0.9247** 0.0003 0.0021 
  

Υ  0.9999**  0.0330 
  

ϴ   0.0078** 0.0079** 
 

LLF 11901.71 12042 12382.17 12390.53 
  

AIC -6.0878 -6.1596 -6.3343 -6.3375 
  

BIC -6.0782 -6.1500 -6.3263 -6.326 
  

Source: Prepared by authors 

      

Note: ** and * represents significance at 5 % and 10 %, respectively 

L is the log-likelihood function value, and the AIC and BIC denote the Akaike and Schwarz information criteria, respectively. 
 

Table 10 

Performance of Volatility Forecasting Models for the BRICS Indices Based on the MSE and QLIKE Criteria for the Out-Of-

Sample Period 

Models Nifty50 

 MSE QLIKE 

GARCH 0.000209 -8.45866 

TARCH 0.000203 -9.21218 

RGARCH 0.000125 -8.45108 

RTARCH 0.000126 -8.4511 

Models Shanghai 

 MSE QLIKE 

GARCH 0.000266 -8.22335 

TARCH 0.000273 -8.97847 

RGARCH 0.000169 -8.22189 

RTARCH 0.000274 -8.22182 

Models IBOVESPA 

 MSE QLIKE 

GARCH 0.000267 -8.14897 

TARCH 0.000263 -8.81951 

RGARCH 0.000176 -8.14848 

RTARCH 0.000177 -8.14849 
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Models MOEX 

 MSE QLIKE 

GARCH 0.000384 -7.79508 

TARCH 0.000374 -8.68431 

RGARCH 0.000199 -7.79432 

RTARCH 0.000199 -7.79431 

Models South Africa 

 MSE QLIKE 

GARCH 0.000163 -8.68673 

TARCH 0.000162 -9.32788 

RGARCH 0.000109 -8.68688 

RTARCH 0.000163 -8.68712 

Source: Prepared by authors 

Table 11 

 Performance of Volatility Forecasting Models for the Developed Indices Based on the MSE and QLIKE Criteria for the Out-

Of-Sample Period 

Models SPX 

 MSE QLIKE 

GARCH 0.000122 -8.92234 

TARCH 0.00013 -9.79782 

RGARCH 0.000069 -8.91187 

RTARCH 0.000070 -8.91190 

Models UXX 

 MSE QLIKE 

GARCH 0.000119 -8.99147 

TARCH 0.000118 -9.79222 

RGARCH 0.000069 -8.98877 

RTARCH 0.000070 -8.98895 

Models DAX 

 MSE QLIKE 

GARCH 0.000178 -8.45418 

TARCH 0.000185 -9.06146 

RGARCH 0.000118 -8.45434 

RTARCH 0.000123 -8.45455 

Source: Prepared by authors 

Table 12 

Diebold-Mariano Test Statistics for Volatility Forecasting of BRICS Indices for the Out-Of-Sample Period 

 NIFTY50 

Models TARCH RGARCH RTARCH  

GARCH -1.3826 -1.7263* -1.7219*  

TARCH  -2.539** -2.5315**  

RGARCH     

RTARCH  -3.2583**   

 Shanghai 

Models TARCH RGARCH RTARCH  

GARCH -1.0656 -0.9220 -1.0271  

TARCH  1.5436 1.6583*  

RGARCH     

RTARCH  1.504   
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 MOEX 

Models TARCH RGARCH RTARCH  

GARCH -0.0092 -0.5546 -0.56239  

TARCH  -2.3611** -2.3662**  

RGARCH     

RTARCH  2.7715**   

 IBOVESPA 

Models TARCH RGARCH RTARCH  
GARCH -0.0091 -0.9898 -0.97278 

 

Models TARCH RGARCH RTARCH  

TARCH  -1.895** -1.888**  

RGARCH     

RTARCH  -2.2984**   

 South Africa 

Models TARCH RGARCH RTARCH  

GARCH 0.8534 0.2298 0.8626  

TARCH  -1.0321 -0.5085  

RGARCH     

RTARCH  -1.2155   

Source: Prepared by authors 

Note: ** and * represents significance at 5 % and 10 %, respectively   

 
 

Table 13 

 Diebold-Mariano Test Statistics for Volatility Forecasting of Developing Indices for the Out-Of-Sample Period 

 UXX Index 

Models TARCH RGARCH RTARCH  

GARCH 0.2097 0.0248 0.0624  

TARCH  -1.6436 -1.5367  

RGARCH     

RTARCH  -2.3365**   

 DAX Index 

Models TARCH RGARCH RTARCH  

GARCH 1.0367 0.4783 0.55461  

TARCH  -2.6975** -2.6127**  

RGARCH     

RTARCH  -3.5904**   

 SPX 

Models TARCH RGARCH RTARCH  

GARCH -1.0206 -1.2594 -1.2456  

TARCH  -1.9948** -1.9757**  

RGARCH     

RTARCH  -2.5836**   

Source: Prepared by authors 

Note: ** and * represents significance at 5 % and 10 %, respectively   

 
 

Table 14 

VaR Back-Testing for BRICS Economies 

. One-step-ahead VaR back-testing at a 95% confidence level for the NIFTY50 index for the out-of-sample period 

Models LR(UC) LR(CC) Expected exceedances @5% Actual Exceedances Actual exceedances (%)  
GARCH 0 2.20 50 50 5%  
TARCH 0.021 0.09 50 51 5.10%  
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Models LR(UC) LR(CC) Expected exceedances @5% Actual Exceedances Actual exceedances (%)  

RGARCH 2.253 3.33 50 40 4%  
RTARCH 1.812 1.87 50 41 4%  

.One-step-ahead VaR back-testing at a 95% confidence level for the Shanghai index for the out-of-sample period 

Models LR(UC) LR(CC) Expected exceedances @5% Actual Exceedances Actual exceedances (%)  
GARCH 1.421 2.211 50 42 4.2%  
TARCH 0.085 0.297 50 48 4.8%  

RGARCH 5.268** 5.714 50 32 3.5%  
RTARCH 1.421 1.454 50 42 4.2%  

.One-step-ahead VaR back-testing at a 95% confidence level for the MOEX index for the out-of-sample period 

Models LR(UC) LR(CC) Expected exceedances @5% Actual Exceedances Actual exceedances (%)  
GARCH 4.553** 4.908 50 36 3.6%  
TARCH 0.544 0.544 50 45 4.5%  

RGARCH 17.475** 19.782** 50 24 2.4%  
RTARCH 17.475** 19.782** 50 24   

        
.One-step-ahead VaR back-testing at a 95% confidence level for the IBOVESPA index for the out-of-sample period 

Models LR(UC) LR(CC) Expected exceedances @5% Actual Exceedances Actual exceedances (%)  
GARCH 0.083 0.117 50 52 5.2%  
TARCH 0.021 0.747 50 51 5.1%  

RGARCH 0.544 0.996 50 45 4.5%  
RTARCH 0.788 1.342 50 44 4.4%  

        
.One-step-ahead VaR back-testing at a 95% confidence level for the South Africa index for the out-of-sample period 

Models LR(UC) LR(CC) Expected exceedances @5% Actual Exceedances Actual exceedances (%)  
GARCH 9.022** 9.694** 50 72 7.2%  
TARCH 4.918** 5.561 50 66 6.6%  

RGARCH 0.544 1.235 50 45 4.5%  
RTARCH 1.783 1.811 50 43 4.3%  

        

Source: Prepared by the authors 

Note: * indicates a 5% significance level, and LRuc and LRcc are the statistics of unconditional and conditional coverage tests, 

respectively. The critical values for the unconditional and conditional coverage tests are 3.841 and 5.991, respectively. The null hypothesis 

of the UC test is Correct exceedances, and the Null hypothesis of the CC test is correct exceedances and independence of failures. 

Table 15 

VaR Back-Testing for Developed Economies 

One-step-ahead VaR back-testing at a 95% confidence level for the SPX index for the out-of-sample 

period 

Models LR(UC) LR(CC) Expected exceedances @5% Actual Exceedances 

Actual exceedances 

(%) 

GARCH 2.836 6.86** 50 62 6.2% 

TARCH 4.918** 7.803** 50 66 6.6% 

RGARCH 4.345** 9.193** 50 65 6.5% 

RTARCH 1.616 6.661** 50 59 5.9% 

       
.One-step-ahead VaR back-testing at a 95% confidence level for the DAX index for the out-of-sample period 

Models LR(UC) LR(CC) Expected exceedances @5% Actual Exceedances Actual exceedances (%)  
GARCH 9.813** 10.372** 50 73 7.3%  
TARCH 5.524** 5.588 50 67 6.7%  

RGARCH 3.299 3.581 50 63 6.3%  
RTARCH 0.228 1.002 50 47 4.7%  

        
.One-step-ahead VaR back-testing at a 95% confidence level for the UXX index for the out-of-sample period 

Models LR(UC) LR(CC) Expected exceedances @5% Actual Exceedances 

Actual exceedances 

(%)  
GARCH 1.616 4.82 50 59 5.9%  
TARCH 2.826 5.259 50 62 6.2%  

RGARCH 0 6.308** 50 50 5%  
RTARCH 3.776 7.144** 50 41 4.1%  

Source: Prepared by the authors 

Note: * indicates a 5 % significance level, and LRuc and LRcc are the statistics of unconditional and conditional coverage tests, 

respectively. The critical values for the unconditional and conditional coverage tests are 3.841 and 5.991, respectively. The null hypothesis 

of the UC test is Correct exceedances, and the Null hypothesis of the CC test is correct exceedances and independence of failures. 
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